Skip to main content
Log in

Model Investigations on the Stability of the Steel-Slag Interface in Continuous-Casting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the continuous-casting mold, the mold powder in contact with the liquid steel surface forms a liquid slag layer. The flow along the steel-slag interface generates shear stress at the interface, waves, and leads to fingerlike protrusions of liquid slag into steel. Reaching a critical flow velocity and thereby shear stress, the protrusions can disintegrate into slag droplets following the flow in the liquid steel pool. These entrained droplets can form finally nonmetallic inclusions in steel material, cause defects in the final product, and therefore, should be avoided. In the current work, the stability of a liquid-liquid interface without mass transfer between phases was investigated in cold model study using a single-roller driven flow in oil-water systems with various oil properties. Applying the similarity theory, two dimensionless numbers were identified, viz. capillary number Ca and the ratio of kinematic viscosities ν 1/ν 2, which are suitable to describe the force balance for the problem treated. The critical values of the dimensionless capillary number Ca* marking the start of lighter phase entrainment into the heavier fluid, are determined over a wide range of fluid properties. The dimensionless number ν 1/ν 2 was defined as the ratio of kinematic viscosities of the lighter phase ν 1 and heavier phase ν 2. The ratios of kinematic viscosities of different steel-slag systems were calculated using measured thermophysical properties. With the knowledge of thermophysical properties of steel-slag systems, Ca* for slag entrainment as a function of v 1/v 2 is derived. Assuming no reaction between the phases and no interfacial flow, slag entrainment should not occur under the usual casting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

1:

lighter phase

2:

heavier phase

m:

model

c:

continuous-casting mold

w:

water

o:

silicone oil

Fe:

liquid metal

Sl:

liquid slag

*:

critical condition

Ca:

capillary number (dimensionless)

d :

droplet diameter [mm]

Fr:

froude number (dimensionless)

f :

frequency (s−1)

g :

force of gravity (m s−2)

L :

characteristic length (m)

Re:

reynolds number (dimensionless)

u :

fluid velocity (m s−1)

We:

weber number (dimensionless)

α :

angular acceleration (rad s−2)

η :

dynamic viscosity (kg m−1 s−1)

θ :

angle (deg)

ν :

kinematic viscosity (m−2 s−1)

ν 1/ν 2 :

ratio of kinematic viscosities (dimensionless)

λ :

scale factor (dimensionless)

Π:

variable of dimensionless group

ρ :

density (kg m−3)

σ :

interfacial tension between model liquids/ steel-slag (mN m−1)

ω :

angular velocity (rad s−1)

References

  1. R.P. Singh and D.N. Gosh: Ironmaking Steelmaking, 1990, vol.17, pp. 333–42.

    CAS  Google Scholar 

  2. Q.L. He and N. Standish: ISIJ Int., 1990, vol. 30, pp. 356–61.

    Article  CAS  Google Scholar 

  3. T. El Gammal, G. Hinds, and U. Schöneberger: Steel Res., 1991, vol. 62, pp. 152–56.

    CAS  Google Scholar 

  4. T. Wei and F. Oeters: Steel Res., 1992, vol. 62, pp. 60–68.

    Google Scholar 

  5. J. Mietz, S. Schneider, and F. Oeters: Steel Res., 1991, vol. 62, pp. 10–15.

    CAS  Google Scholar 

  6. A.W. Cramb: Proceedings of the Roderick Guthrie Honorary Symposium on Process Metallurgy, 2011, Montreal, Canada, pp. 151–59.

  7. J. Park: Mater. Sci. Eng. A, 2008, vol. 472A, pp. 43–51.

    Google Scholar 

  8. B.G. Thomas: Proceedings of the Proceedings of the 3rd International Congress on the Science and Technology of Steelmaking, 2005, Charlotte, NC, pp. 847–61.

  9. J. Savolainen, T. Fabritius, and O. Mattila: ISIJ Int., 2009, vol. 49, pp. 26–36.

    Article  Google Scholar 

  10. J. Harman and A.W. Cramb: Steelmaking Conference Proceedings, 1996, pp. 773–83.

  11. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685–91.

    Article  CAS  Google Scholar 

  12. J. Yoshida, T. Ohmi, and M. Iguchi: ISIJ Int., 2005, vol. 45, pp. 1160–64.

    Article  CAS  Google Scholar 

  13. K. Watanabe, K. Tsutsumi, M. Suzuki, M. Nakada, and T. Shiomi: ISIJ Int., 2009, vol. 49, pp. 1161–66.

    Article  CAS  Google Scholar 

  14. S. Feldbauer and A.W. Cramb: Proceedings of the 13th Process Technology Conference Iron and Steel Society (ISS), Warrendale, PA, 1995, pp. 327–40.

  15. D. Barthes-Biesel and A. Acrivos: J. Fluid Mech., 1973, vol. 61, pp. 1–21.

    Article  Google Scholar 

  16. B.J. Bentley and L.G. Leal: J. Fluid Mech., 1986, vol. 167, pp. 241–83.

    Article  CAS  Google Scholar 

  17. R.A De Bruijn: Chem. Eng. Sci., 1993, vol. 48, pp. 277–84.

    Article  CAS  Google Scholar 

  18. H.A. Stone: Ann. Rev. Fluid Mech., 1994, vol. 26, pp. 65–102.

    Article  Google Scholar 

  19. Avidemux 2.5.2 documentation http://www.avidemux.org.

  20. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83.

    Article  CAS  Google Scholar 

  21. B. Sahebkar: Ph.D. Dissertation, Technical University Freiberg, Germany, 2004.

  22. R.R. Lagnado and L.G. Leal: Exp. Fluids, 1990, vol. 9, pp. 25–32.

    Article  CAS  Google Scholar 

  23. E. Buckingham: Phys. Rev. Lett., Am. Phys. Soc., 1914, vol. 4, pp. 345–76.

    Google Scholar 

  24. P. Strove and P. Varanasi: J. Colloid Interface Sci., 1984, vol. 99, pp. 360–73.

    Article  Google Scholar 

  25. Wacker Silicones, data specification, http://www.wacker.com/.

  26. ImageJ doc.1.4.3I http://www.rsbweb.nih.gov/ij/.

  27. A.W. Cramb, Y. Chung, J. Harman, A. Sharan, and I. Jimbo: Proceedings of the 5th Conference on Molten Slags, Fluxes and Salts, 1996, pp. 35–50.

  28. H.P. Heller, M. Hötzel, B. Lychatz, and P.R. Scheller: Institute of Iron and Steel Technology, Freiberg, Germany, unpublished research, 2010.

  29. Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995, p. 345.

  30. J. Miettinen: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 281–97.

    Article  CAS  Google Scholar 

  31. T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, U.K., 1993, pp. 147–98.

    Google Scholar 

  32. R. McDavid and B.G. Thomas: Metall. Mater. Trans B, 1996, vol. 27B, pp. 672–84.

    Article  CAS  Google Scholar 

  33. D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 695–97.

    Article  CAS  Google Scholar 

  34. M.B. Assar, P.H. Dauby, and G.D. Lawson: Proceedings of the 83th Steelmaking Conference, 2000, Pittsburgh, PA, pp. 397–411.

  35. P.H. Dauby: Proceedings of the Roderick Guthrie Honorary Symposium on Process Metallurgy, 2011, Montreal, Canada, pp. 387–96.

  36. M.A. Rhamdhani, G.A. Brooks, and K.S. Coley: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 219–27.

    Article  CAS  Google Scholar 

  37. P.V. Riboud and L.D. Lucas: Can. Metall. Q., 1981, vol. 20, pp. 199–208.

    Article  CAS  Google Scholar 

  38. Y. Chung and A.W Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957–71.

    Article  CAS  Google Scholar 

  39. A. Jakobsson, N.N. Viswanathan, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 973–80.

    Article  CAS  Google Scholar 

  40. P.R. Scheller: Steel Res. Int., 2005, vol. 76, pp. 581–87.

    CAS  Google Scholar 

  41. P.R. Scheller: Ironmaking Steelmaking, 2002, vol. 29, pp. 154–60.

    Article  CAS  Google Scholar 

  42. H. Gaye, L.D. Lucas, M. Olette, and P.V. Riboud: Can. Metall. Q., 1984, vol. 23, pp. 179–91.

    Article  CAS  Google Scholar 

  43. A. Sharan and A.W. Cramb: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 87–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Prof. S. Seetharaman for the fruitful discussions in the last stage of article preparation and D. Ryabov for performing the PIV measurements. This research was supported by the DFG (German Research Foundation) research funding organization under project No.: SCHE675/10 and SCHW1168/2. This is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hagemann.

Additional information

Manuscript submitted December 19, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagemann, R., Schwarze, R., Heller, H.P. et al. Model Investigations on the Stability of the Steel-Slag Interface in Continuous-Casting Process. Metall Mater Trans B 44, 80–90 (2013). https://doi.org/10.1007/s11663-012-9749-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9749-9

Keywords

Navigation