Skip to main content
Log in

Hydride-Phase Formation and its Influence on Fatigue Crack Propagation Behavior in a Zircaloy-4 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hydride-phase formation and its influence on the fatigue behavior of a Zircaloy-4 alloy charged with hydrogen gas are investigated. First, the microstructure and fatigue crack propagation rate of the alloy in the as-received condition are studied. Second, the formation and homogeneous distribution of the delta zirconium hydride in the bulk and its effect on the fatigue crack propagation rate are presented. The results show that in the presence of hydrides, the zirconium alloy exhibits reduced toughness and enhanced crack growth rates. Finally, the influence of a preexisting fatigue crack in the specimen and the subsequent hydride formation are examined. The residual lattice strain profile around the fatigue crack tip is measured using neutron diffraction. It is observed that the combined effects of residual strains and hydride precipitation on the fatigue behavior are more severe leading to propagation of the crack under near threshold loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Quach and D.O. Northwood: Metallography, 1984, vol. 17, pp. 191–201.

    Article  CAS  Google Scholar 

  2. G. Bertolino, J. Perez Ipina, and G. Meyer: J. Nucl. Mater., 2006, vol. 348, pp. 205–12.

    Article  CAS  ADS  Google Scholar 

  3. E.C.W. Perryman: J. Br. Nucl. Energ Soc., 1978, vol. 17 (2), pp. 95–105.

    CAS  Google Scholar 

  4. J. Lufrano, P. Sofronis, and H.K. Birnbaum: J. Mech. Phys. Solids, 1998, vol. 46, pp. 1497–1520.

    Article  MATH  CAS  ADS  Google Scholar 

  5. J. Lufrano, P. Sofronis, and H.K. Birnbaum: J. Mech. Phys. Solids, 1996, vol. 44, no. 2, pp. 179–205.

    Article  CAS  ADS  Google Scholar 

  6. S. Sagat, S.Q. Shi, and M.P. Puls: Mater. Sci. Eng. A, 1994, vol. 176, pp. 237–47.

    Article  CAS  Google Scholar 

  7. R. Dutton, K. Nuttall, M.P. Puls, and L.A. Simpson: Metall. Trans. A, 1977, vol. 8A, pp. 1553–62.

    CAS  ADS  Google Scholar 

  8. L.A. Simpson and M.P. Puls: Metall. Trans. A, 1979, vol. 10A, p. 1093.

    CAS  ADS  Google Scholar 

  9. W.W. Gerberich, Y.T. Chen, and C. St. John: Metall. Trans. A, 1975, vol. 6, no. 8, pp. 1485–98.

    Article  Google Scholar 

  10. J.- H. Huang and C.-S Ho: Mater. Chem. Phys., 1997, vol. 47, pp. 184–92.

    Article  CAS  Google Scholar 

  11. S. Suresh: Fatigue of Materials, 2nd ed, Cambridge University Press, New York, NY. 1998.

    Google Scholar 

  12. Y. Sun, H. Choo, P.K. Liaw, Y. Lu, B. Yang, D.W. Brown, and M.A.M. Bourke: Scripta Mater., 2005, vol. 53, pp. 971–75.

    Article  CAS  Google Scholar 

  13. T.M. Holden, J.H. Root, R.A. Holt, and P.A. Turner: J. Nucl. Mater., 2002, vol. 304, pp. 73–82.

    Article  CAS  ADS  Google Scholar 

  14. J.D. Almer, J.B. Cohen, and R.A. Winholtz: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2127–36.

    Article  CAS  ADS  Google Scholar 

  15. E. Garlea, B. Clausen, E.A. Kenik, D. Ciurchea, S.C. Vogel, J.W.L. Pang, and H. Choo: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1255–60.

    Article  CAS  ADS  Google Scholar 

  16. E. Garlea, V.O. Garlea, H. Choo, C.R. Hubbard, and P.K. Liaw: Mater. Sci. Forum, 2007, vols. 539–543, pp. 1443–48.

    Article  Google Scholar 

  17. Wah Chang Company Technical Department, www.wahchang.com, 2010.

  18. ASTM E647-86, Annual Book of ASTM Standards, 1986, pp. 714–36.

  19. J. Harris, and S. Andersson: Phys. Rev. Lett., 1985, vol. 55, pp. 583–1586.

    ADS  Google Scholar 

  20. G.F.V. Voort: Metallography, Principles and Practice, ASM, Materials Park, OH, 1984, p. 701.

    Google Scholar 

  21. ASTM B 811, “Standard Specification for Wrought Zirconium Alloy Seamless Tubes for Nuclear Reactor Fuel Cladding”, 2007, p. 6.

  22. H. Tada, P.C. Paris, and G.R. Irwin: The Stress Analysis of Cracks Handbook, Paris Productions, St. Louis, MO, 1985.

    Google Scholar 

  23. A. Saxena and S.J. Hudak Jr., Int. J. Fracture, 1978, vol. 14, no. 5, pp. 453–68.

    Article  Google Scholar 

  24. L.J. Chen, P.K. Liaw, R.L. McDaniels, and D.L. Klarstrom: Metall. Mater. Trans. A, 2003, vol. 34 A, pp. 1451–60.

    Article  CAS  ADS  Google Scholar 

  25. M.A.M. Bourke, D.C. Dunand, and E Üstündag: Appl. Phys. A, 2002, vol. 74, pp. S1707–09.

    Article  CAS  ADS  Google Scholar 

  26. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  27. A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, http://www.ncnr.nist.gov/xtal/software/gsas.html, 2000, pp. 86–748.

  28. ImageJ software: http://rsb.info.nih.gov/ij/.

  29. ASTM E 562, “Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count”, 2002.

  30. R.A. Holt: J. Nucl. Mater., 1970, vol. 35, pp. 322–34.

    Article  CAS  ADS  Google Scholar 

  31. D. Ciurchea, A.V. Pop, C. Gheorghiu, I. Furtuna, M. Todica, A. Dinu, and M. Roth: J. Nucl. Mater., 1996, vol. 231, pp. 83–91.

    Article  CAS  ADS  Google Scholar 

  32. J.H. Root, W.M. Small, D. Khatamian, and O.T. Woo: Acta Mater., 2003, vol. 51, pp. 2041–53.

    Article  CAS  Google Scholar 

  33. A. Steuwer, J.R. Santisteban, M. Preuss, M.J. Peel, T. Buslaps, and M. Harada: Acta Mater., 2009, vol. 57, pp. 145–52.

    Article  CAS  Google Scholar 

  34. G. Bertolino, G. Meyer, and J.P. Ipina: J. Nucl. Mater., 2003, vol. 320, pp. 272–79.

    Article  CAS  ADS  Google Scholar 

  35. A.W. Funkenbush and L.F. Coffin: Metall. Trans. A, 1978, vol. 9A, pp. 1159–67.

    ADS  Google Scholar 

  36. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, New York, NY, 1996, pp. 591–686.

    Google Scholar 

  37. P.K. Liaw, T.R. Leax, and J.K. Donald: Acta Metall., 1987, vol. 35, no. 7, pp. 1415–32.

    Article  CAS  Google Scholar 

  38. S. Suresh and R.O. Ritchie: Metall. Trans. Phys. Metall. Mater., 1982, vol. 13, no. 9, pp. 1627–31.

    Article  ADS  Google Scholar 

  39. P.K. Liaw and W.A. Logsdon: Eng. Fract. Mech., 1985, vol. 22, no. 1, pp. 115–21.

    Article  Google Scholar 

  40. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  41. J. Lufrano and P. Sofronis: Acta Mater., 1998, vol. 46, no. 5, pp. 1519-26.

    Article  CAS  Google Scholar 

  42. W.S. Gorsky: Phys. Zeitschr. Sowjetunion, 1935, vol. 8, pp. 457.

    Google Scholar 

  43. H. Numakura: Solid State Phenom., 2003, vol. 89, pp. 93–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E. Garlea acknowledges the support of the National Science Foundation (NSF) International Materials Institutes (IMI) Program (DMR-0231320) and the Tennessee Advanced Materials Laboratory Fellowship Program. E. Garlea is grateful to Drs. D.A. Smith and S.J. Randolph for valuable suggestions regarding the nickel sputtering. This work has benefited from the use of Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (Department of Energy). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract De-AC52-06NA25396. EBSD analysis was conducted at the SHaRE User Facility, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Science, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Garlea.

Additional information

Manuscript submitted August 19, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garlea, E., Choo, H., Wang, G.Y. et al. Hydride-Phase Formation and its Influence on Fatigue Crack Propagation Behavior in a Zircaloy-4 Alloy. Metall Mater Trans A 41, 2816–2828 (2010). https://doi.org/10.1007/s11661-010-0342-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0342-z

Keywords

Navigation