Skip to main content
Log in

Expansion Mechanisms in Foaming Aluminum Melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The expansion of molten aluminum foam was studied to determine flow mechanisms in the cellular melt. The structure of the foaming melt evolved through a series of deformation stages before the foam stabilized and solidified. Changes in cell geometry during foam expansion were observed at different positions within the mold cavity and analyzed to determine flow mechanisms. The deformation patterns and cell shapes during foam expansion were observed macroscopically and microscopically from metallographic sections. Simple mechanical models described the salient features and mechanisms of the expansion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Cellular Solids, Cambridge Press, Cambridge, United Kingdom, 1997, pp. 1–2

  2. J. Banhart, J. Baumeister: J. Mater. Sci., 1998, vol. 33, p. 1431

    Article  CAS  Google Scholar 

  3. D.M. Elzey, H.N. Wadley: Acta Mater., 2000, vol. 49, pp. 849–59

    Article  Google Scholar 

  4. C. Park and S.R. Nutt: Mater. Sci. Eng. A, 2000, vol. 288, pp. 111–118; 2001, vol. 297, pp. 62–68

  5. B. Sosnick: U.S. Patent 2,553,016, 1947

  6. J.C. Elliott: U.S. Patent 2,751,289, 1956; U.S. Patent 2,983,597, 1961

  7. P.W. Hardy and G.W. Peisker: U.S. Patent 3,300,296, 1967

  8. C.B. Berry: U.S. Patent 3,669,654, 1972

  9. H. Unno, S. Akiyama: Light Metal 1987, vol. 37, pp. 42–47 (in Japanese)

    Google Scholar 

  10. A.M. Krayni: Ann. Rev. Fluid Mech., 1988, vol. 20, pp. 325–57

    Article  Google Scholar 

  11. D. Weaire, S. Hutzler: The Physics of Foams, Oxford University, United Kingdom, 1999, pp. 75–173

    Google Scholar 

  12. J. Banhart, H. Stanzick, L. Helfen, T. Baumbach: Appl. Phys. Lett., 2001, vol. 78 (8), pp. 1152–54

    Article  CAS  Google Scholar 

  13. I. Duarte, J. Banhart: Acta Mater., 2000, vol. 48, pp. 2349–62

    Article  CAS  Google Scholar 

  14. J. Banhart, D. Bellmann, H. Clemens: Acta Mater., 2001, vol. 49, pp. 3409–20

    Article  CAS  Google Scholar 

  15. Z. Song, L. Ma, Z. Wu, D. He: J. Mater. Sci., 2000, vol. 35 (1), p. 15

    Article  CAS  Google Scholar 

  16. Z. Song, J. Zhu, L. Ma, D. He: Mater. Sci. Eng. A, 2001, vol. 298, pp. 137–43

    Article  Google Scholar 

  17. Z. Song: Ph.D. Thesis, Southeast University, Nanjing, China, 1998

  18. R.K. Prud’homme, R.B. Bird: J. Non-Newtonian Fluid Mech., 1978, vol. 3, pp. 261–79

    Article  Google Scholar 

  19. H.M. Princen: J. Coll. Interface Sci., 1985, vol. 105, pp. 150–71

    Article  CAS  Google Scholar 

  20. A.M. Kraynik, M.G. Hansen: J. Rheology, 1987, vol. 31 (0), pp. 175–205

    Article  CAS  Google Scholar 

  21. D. Weaire, T.L. Fu: J. Rheology, 1988, vol. 32 (3), pp. 271–83

    Article  CAS  Google Scholar 

  22. S.A. Khan, R.C. Armstrong: J. Rheology, 1989, vol. 33 (6), pp. 881–911

    Article  CAS  Google Scholar 

  23. M. Mooney: J. Rheology, 1931, vol. 2, pp. 210–22

    Article  CAS  Google Scholar 

  24. M. Blackman: Trans. Faraday Soc., 1948, vol. 44, pp. 205–06

    Article  CAS  Google Scholar 

  25. H.M. Princen: J. Coll. Interface Sci., 1985, vol. 105, pp. 150–71

    Article  CAS  Google Scholar 

  26. J.A.F. Plateau: Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, Gauthier-Villars, Paris, 1873, pp. 108–91

  27. Lord Kelvin (D. Thompson): Philos. Mag., 1887, vol. 24, pp. 503–04.

  28. D. Thompson: On Growth and Form, Cambridge University, Cambridge, United Kingdom, 1961, chapter 4

  29. H.G. Wenzel, T.E. Stelson, R.J. Brungraber: J. Mater., 1970, vol. 5, pp. 396–412

    CAS  Google Scholar 

  30. R.A. Saravanan, J.M. Molina, J. Narciso, C. Garca-Cordovilla, and E. Louis: Scripta Mater., 2001, vol. 44, pp. 965–70

    Article  CAS  Google Scholar 

  31. R.P. Benedict: Fundamentals of Pipe Flow, John Wiley & Sons, New York, 1980, pp. 178–90

    Google Scholar 

  32. E. Hatschek: Trans. Faraday Soc., 1913, vol. 9, pp. 80–92

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Merwyn C. Gill Foundation and National Major Project of Fundamental Research 2006CB601201, and ZJNSF Y406459 for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlun Song.

Additional information

Manuscript submitted June 19, 2007.

Appendices

Appendix A

1.1 Expansion ratio and rate

The expansion ratio (e(t)) and expansion rate (\( \ifmmode\expandafter\dot\else\expandafter\.\fi{e}(t) \)) of the foaming melt are functions of holding time in the process. These quantities can be expressed as

$$ e(t) = \frac{{V(t)}} {{V_{0} }},\quad \ifmmode\expandafter\dot\else\expandafter\.\fi{e}(t) = \frac{{de(t)}} {{dt}} = \frac{{dV(t)}} {{V_{0} dt}} $$
(A1)

where V 0 and V(t) are the original volume and the dynamic volume of the foaming melt, respectively. Both parameters were measured.

For convenience of describing the kinetics, the logarithmic expansion ratio (E(t)) and logarithmic expansion rate (\( \ifmmode\expandafter\dot\else\expandafter\.\fi{E}(t) \)) can be defined as

$$ E(t) = \ln \frac{{V(t)}} {{V_{0} }},\quad \ifmmode\expandafter\dot\else\expandafter\.\fi{E}(t) = \frac{{dE(t)}} {{dt}} = \frac{{dV(t)}} {{V(t)dt}} $$
(A2)

The relations between E(t) and e(t), and between \( \ifmmode\expandafter\dot\else\expandafter\.\fi{E}(t) \) and \( \ifmmode\expandafter\dot\else\expandafter\.\fi{e}(t) \) are

$$ E(t) = \ln [e(t)],\quad \ifmmode\expandafter\dot\else\expandafter\.\fi{E}(t) = \frac{{\ifmmode\expandafter\dot\else\expandafter\.\fi{e}(t)}} {{e(t)}} = \frac{{d[\ln e(t)]}} {{dt}} $$
(A3)

Isothermal melt conditions permit one to observe foam expansion after the blowing agent is added. A device was employed for detecting the height of the expanding foam,[16] and in a cylindrical crucible, the height of the foam (H(t)) is a function of hold time. The relations between H(t), expansion ratio and expansion rate are

$$ e(t) = \frac{{H(t)}} {{H_{0} }} $$
$$ \ifmmode\expandafter\dot\else\expandafter\.\fi{e}(t) = \frac{{dH(t)}} {{H_{0} dt}} $$
$$ E(t) = \ln \frac{{H(t)}} {{H_{0} }} $$
$$ \ifmmode\expandafter\dot\else\expandafter\.\fi{E}(t) = \frac{{dH(t)}} {{H(t)dt}} $$

respectively, where H 0 and H(t) are the original height and the dynamic height of the foaming melt, respectively.

Appendix B

1.1 Porosity

Perhaps the most critical characteristic of foam is the porosity (p)

$$ p = 1 - \frac{{V_{0} }} {V} = 1 - \frac{1} {e} $$
(B1)

The relation between the instantaneous specific density of the expanding foam ρ f and the expansion ratio is

$$ \rho _{f} = \rho _{0} (1 - p) = \frac{{\rho _{0} }} {{e(t)}} $$
(B2)

where ρ 0 is the density of the melt metal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Nutt, S. Expansion Mechanisms in Foaming Aluminum Melts. Metall Mater Trans A 39, 2215–2227 (2008). https://doi.org/10.1007/s11661-008-9573-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9573-7

Keywords

Navigation