Skip to main content
Log in

Oxidation Behavior and Mechanisms of TiAlN/VN Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hard wear-resistant coatings require excellent oxidation resistance for high-speed machining operations. Moreover, the oxide formed is integral to the frictional behavior and therefore the success of the coating. The oxidation behavior of TiAlN/VN nanoscale multilayer coatings was investigated using high-resolution techniques and was compared with TiN and TiAlN coatings. Static oxidation of TiAlN/VN films was studied in the range 550 °C to 700 °C, and characterized by high-temperature in-situ X-ray diffraction (XRD) and scanning transmission electron microscopy/energy-dispersive X-ray/electron energy loss spectroscopy (STEM/EDX/EELS) of selected surface cross sections. The oxidation resistance of TiAlN/VN was found to be controlled by the VN layers, and consequently, oxidation was initiated at a lower temperature than TiN and TiAlN coatings. The onset of oxidation of the TiAlN/VN coating was found to be ≥550 °C with the VN being the first component to oxidize. At temperatures >600 °C, a duplex oxide structure was formed; the inner layer comprised a porous region of Ti-rich and V-rich nanocrystallites, while several phases were observed in the outer region, including V2O5, TiO2, and AlVO4. V2O5 was the dominant oxide at the outer layer at ≥638 °C. The outward diffusion of V depended on the species present; in the inner layer, V was present as V3+, V4+, whereas a significant V5+ was dominant in the outer layer of oxide at ≥638 °C. An Au marker study suggested roughly equal diffusivity of cations outward, and oxygen inward diffusion occurred during oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp. Mahwah, NJ.

  2. Gatan is a trademark of Gatan Inc., Pleasanton, CA.

  3. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M. Wittmer, J. Noser, H. Melchior: J. Appl. Phys., 1981, vol. 52, pp. 6659–64.

    Article  CAS  Google Scholar 

  2. J. Desmaison, P. Lefort, M. Billy: Oxid. Met., 1979, vol. 13, pp. 505–17

    Article  CAS  Google Scholar 

  3. J. Desmaison, P. Lefort, M. Billy: Oxid. Met., 1979, vol. 13, pp. 203–22

    Article  CAS  Google Scholar 

  4. W.-D. Münz: J. Vac. Sci. Technol. A, 1986, vol. 4, pp. 2717–25

    Article  Google Scholar 

  5. U. Wahlstorm, L. Hultman, J.E. Sundgren, F. Adibi, I. Petrov, J.E. Greene: Thin Solid Films, 1993, vol. 235, pp. 62–70

    Article  Google Scholar 

  6. L. Hultman: Vacuum, 2000, vol. 57, pp. 1–30

    Article  CAS  Google Scholar 

  7. D. Mclntyre, J.E. Greene, G. Hakansson, J.-E. Sundgren, W.-D. Münz: J. Appl. Phys. 1990, vol. 67, pp. 1542–53

    Article  Google Scholar 

  8. W.-D. Münz, D.B. Lewis, P.E. Hovsepian, C. Schönjahn, A. Ehiasarian, I.J. Smith: Surf. Eng., 2001, vol. 17, pp. 15–27

    Article  Google Scholar 

  9. S.T. Oyama: Catalysis Today, 1992, vol. 15, pp. 179–200

    Article  CAS  Google Scholar 

  10. O. Knotek, A. Barimani, B. Bosserhoff, F. Loffler: Thin Solid Films, 1990, vol. 193, pp. 557–64

    Article  Google Scholar 

  11. C. Borgianni, V.D.I. Stefano, R. Garmaldi: J. Less-Common Met., 1970, vol. 20, pp. 299–307

    Article  CAS  Google Scholar 

  12. K. Bouzouita, J. Desmaison, M. Billy: React. Solids, 1987, vol. 2, pp. 325–37

    Article  CAS  Google Scholar 

  13. B. Vaidhyanathan, D.K. Agrawal, R. Roy: J. Mater. Res., 2000, vol. 15, pp. 974–81

    Article  CAS  Google Scholar 

  14. W.M. Rainforth, A.J. Leonard, C. Perrin, A. Bedolla-Jacuinde, Y. Wang, H. Jones, Q. Luo: Tribol. Int., 2002, vol. 35, pp. 731–48

    Article  CAS  Google Scholar 

  15. Z. Zhou, C.C. Calvert, W.M. Rainforth, Q. Luo, L. Chen, and P.Eh. Hovsepian: Proc. EMAG-NANO 2005: Imaging, Analysis and Fabrication on the Nanoscale, Journal of Physics Conf. Ser., P.D. Brown, R.T. Baker, and B. Hamilton, eds., Institute of Physics Publishing, Bristol and Philadelphia, 2006, vol. 26, pp. 95–98

  16. P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, W.-D. Münz: Surf. Coat. Technol., 2004, vols. 177–178, pp. 341–47

    Article  CAS  Google Scholar 

  17. K. Kutschej, M. Kathrein, P. Polcik, C. Mitterer: Surf. Coat. Technol., 2004, vols. 188–189, pp. 358–63

    Article  CAS  Google Scholar 

  18. G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Katherein: Tribol. Lett., 2004, vol. 17, pp. 751–56

    Article  CAS  Google Scholar 

  19. C.P. Constable, J. Yarwood, P.E. Hovsepian, L.A. Donohue, D.B. Lewis, W.-D. Münz: J. Vac. Sci. Technol., 2000, vol. 18, pp. 1681–89

    Article  CAS  Google Scholar 

  20. International Chemical Safety Cards, ICSC: 0596

  21. M. Woydt, A. Skopp, I. Dorfel, K. Witke: Wear, 1998, vol. 218, pp. 84–95

    Article  CAS  Google Scholar 

  22. Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasey, J.J. Forsyth, F. Clegg, A. Ehiasarian, P.E. Hovsepian, W.-D. Münz: Surf. Coat. Technol., 2004, vols. 177–178, pp. 198–203

    Article  CAS  Google Scholar 

  23. D.B. Lewis, S. Creasy, Z. Zhou, J.J. Forsyth, A.P. Ehiasarian, P.E. Hovsepian, Q. Luo, W.M. Rainforth, W.-D. Münz: Surf. Coat. Technol., 2004, vols. 177–178, pp. 252–59

    Article  CAS  Google Scholar 

  24. D.G. Park, T.H. Cha, S.H. Lee, I.S. Yeo, J.W. Park, S.D. Kim: J. Vac. Sci. Technol. B, 2001, vol. 19, pp. 2289–94

    Article  CAS  Google Scholar 

  25. P. Kofstad: High Temperature Oxidation of Metals, John Wiley & Sons, New York, NY, 1966, p. 38

    Google Scholar 

  26. Z. Zhou, W.M. Rainforth, U. Falke, M. Falke, A. Bleloch, P.Eh. Hovsepian: Phil. Mag., 2007, vol. 87, pp. 967–78

    Article  CAS  Google Scholar 

  27. L.A. Donohue, I.J. Smith, W.-D. Münz, I. Petrov, J.E. Greene: Surf. Coat. Technol., 1997, vols. 94–95, pp. 226–31

    Article  Google Scholar 

  28. M.I. Lembke, D.B. Lewis, W.-D. Münz, J.M. Titchmarsh: Surf. Eng., 2001, vol. 17, pp. 153–58

    Article  CAS  Google Scholar 

  29. Gatan Precision Ion Polish System User Manual, Gatan Inc., Pleasanton, CA.

  30. Q. Luo, D.B. Lewis, P.E. Hovsepian, W.-D. Münz: J. Mater. Res., 2004, vol. 19, pp. 1093–1104

    Article  CAS  Google Scholar 

  31. M. Ohring: Materials Science of Thin Films, Deposition and Structure, 2nd ed., Academic Press, New York, NY, 2002, pp. 258–60

    Google Scholar 

  32. S. Creasey, D.B. Lewis, I.J. Smith, W.-D. Münz: Surf. Coat. Technol., 1997, vol. 97, pp. 163–75

    Article  CAS  Google Scholar 

  33. P. Kofstad: High Temperature Oxidation of Metals, John Wiley & Sons, New York, NY, 1966. pp. 191–222

    Google Scholar 

  34. I. Petrov, P. Losbichler, D. Bergstrom, J.E. Greene, W.D. Munz, T. Hurkmans, T. Trinh: Thin Solid Films, 1997, vol. 302, pp. 179–92

    Article  CAS  Google Scholar 

  35. JCPDS card: 39–376

  36. JCPDS card: 25–26

  37. E.P. Reddy, T.C. Rojas, A. Fernandez, B. Chowdhury, B.M. Reddy: Langmuir, 2000, vol. 16, pp. 4217–21

    Article  CAS  Google Scholar 

  38. J.P. Nogier, J. Thoret, N. Jammul, J. Fraissard: Appl. Surf. Sci., 1991, vol. 47, pp. 287–92

    Article  CAS  Google Scholar 

  39. M.I. Lembke, J.M. Titchmarsh, D.B. Lewis, and W.-D. Münz: MRS Fall Meeting 2000, Proc. Symp. P, Growth, Evolution and Properties of Surfaces, Thin Films and Self-Organized Structures, S.C. Moss, ed., Materials Research Society, Warrendale, 2000, vol. 648, p. P6.57

  40. E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase Diagrams for Ceramics, The American Ceramic Society, Columbus, Ohio, 1964, Fig. 96

  41. F. Hofer, P. Warbichler, A. Scott, R. Brydson, I. Galesic, and B. Kolbesen: J. Microsc., 2001, vol. 204, part 2, pp. 166–71

  42. S. Trasobares, O. Stephan, C. Colliex, G. Hug, W.K. Hsu, H.W. Kroto, D.R.M. Walton: Eur. Phys. J. B, 2001, vol. 22, pp. 177–22

    Google Scholar 

  43. M.I. Lembke: Ph.D. Thesis, Sheffield Hallam University, Sheffield, United Kingdom, 2001

  44. E. Lugscheider, O. Knotek, K. Bobzin, S. Barwulf: Surf. Coat. Technol., 2000, vols. 133–134, pp. 362–68

    Article  Google Scholar 

  45. O. Kubaschewski, B.E. Hopkins: Oxidation of Metals and Alloys, 2nd Ed, Butterworths, London, 1962, pp. 8–14

    Google Scholar 

  46. Smithells Metal Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth Heinemann, Oxford, 1992

Download references

Acknowledgments

We are grateful to EPSRC for funding through Grant No. GR/N23998/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.M. Rainforth.

Additional information

Manuscript submitted July 27, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Rainforth, W., Rodenburg, C. et al. Oxidation Behavior and Mechanisms of TiAlN/VN Coatings. Metall Mater Trans A 38, 2464–2478 (2007). https://doi.org/10.1007/s11661-007-9293-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9293-4

Keywords

Navigation