Skip to main content

Advertisement

Log in

In vitro and in vivo effects of puerarin on promotion of osteoblast bone formation

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To assess the effect of puerarin, a natural flavonoid found in Chinese Pueraria Lobata (Wild.) Ohwi, on promotion of new bone formation.

Methods

Osteoblasts isolated from calvarial of newborn rats were cultured in vitro in the presence of puerarin at various concentrations. The viability of osteoblasts and alkaline phosphotase activity and mineral node formation were determined. In addition, osteoblasts seeded in the β-tricaclium phosphate scalfolds as bone substitute were implanted in rat dorsal muscles. Half -of the recipient rats received intramuscular injection of puerarin at 10 mg/(kg·d) for 7 days. Osteogenesis was analyzed by examining the histology after 4 weeks of implantation.

Results

The viability of osteoblasts treated with puerarin at either 40 or 80 μmol/L was significantly higher than that of the control (P<0.05 and P<0.01, respectively). Alkaline phosphatase and mineral modules were significantly increased in osteoblasts cultured with puerarin at 40 or 80 mol/L when compared with that of the untreated cells. The puerarin-treated rats had a higher rate of bone formation in the osteoblast implants than the control rats (6.35% vs. 1.32%, respectively, P<0.05).

Conclusion

Puerarin was able to affect osteoblast proliferation and differentiation, and promote the new bone formation in osteoblast implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirokazu K, Takaaki T, Masaaki C, Takahiro K. Repair of segmental bone defects in rabbit tibiae using a complex of b-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 2006;27:5118–5126.

    Article  Google Scholar 

  2. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006;10:7–19.

    Article  PubMed  CAS  Google Scholar 

  3. Smith LA, Liu XH, Ma PX. Nano-fibrous scaffolds for tissue engineering. Soft Matter 2008;4:2144–2149.

    Article  PubMed  CAS  Google Scholar 

  4. Liang G, Yang Y, Oh S, Ong JL, Zheng C, Ran J, et al. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Biomaterials 2005;26:4265–4271.

    Article  PubMed  CAS  Google Scholar 

  5. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–926.

    Article  PubMed  CAS  Google Scholar 

  6. Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005;16:981–989.

    Article  PubMed  Google Scholar 

  7. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006;10:7–19.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson JB, Garner SC. Phytoestrogens and bone. Baillieres Clin Endocrinol Metab 1998;12:543–557.

    Article  PubMed  CAS  Google Scholar 

  9. Wu HQ, Guo HN, Wang HQ, Chang MZ, Zhang GL, Zhao YX. Protective effect and mechanism of puerarin on learning-memory disorder after global cerebral ischemiareperfusion injury in rats. Chin J Integr Med 2009;15:54–59.

    Article  PubMed  CAS  Google Scholar 

  10. Wang XX, Wu J, Chiba H, Umegaket K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab 2003;21:268–275.

    Article  PubMed  CAS  Google Scholar 

  11. Blarir, HC, Jordan SE, Peterson TG, Stephenal B. Variable effects of ty-rosine kinase inhibitor on avian osteoclastic activity and reduction of bone loss in ovariectiomized rats. J Cell Biochem 1996;61:629–637.

    Article  Google Scholar 

  12. Heidi D, Natasj VV, Erna D, Maeyer Ronald V, Etienne S, Leo DR, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 2004;25:757–768.

    Article  Google Scholar 

  13. Yuan J, Cui L, Zhang WJ, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 2007;28:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Q, Fu T. Effect of puerarin on the healing osteoporotic fracture in ovariectomized rats. Chin J Clin Rehabilit 2006;10:45–47.

    CAS  Google Scholar 

  15. Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005;26:3565–3575.

    Article  PubMed  CAS  Google Scholar 

  16. Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CWGM. Peroxisome proliferator-activated receptor g (PPARg) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 2003;278:962–967.

    Article  PubMed  CAS  Google Scholar 

  17. Dang ZC, Löwik CW. The balance between concurrent activation of ERs and PPARs determines daidzeininduced osteogenesis and adipogenesis. J Bone Miner Res 2004;19:853–861.

    Article  PubMed  CAS  Google Scholar 

  18. Viereck V, Gründker C, Blaschke S, Siggelkow H, Emons G, Hofbauer LC. Phytoestrogen genistein stimulates the production of osteoprotegerin by human trabecular osteoblasts. J Cell Biochem 2002;84:725–735.

    Article  PubMed  Google Scholar 

  19. Notoya M, Tsukamoto Y, Nishimura H, Woo JT, Nagai K, Lee IS, et al. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 2004;485:89–96.

    Article  PubMed  CAS  Google Scholar 

  20. Garcia T, Roman S, Jackson A, Thellhaber J, Connolly T, Spinella-Jaegle S, et al. Behavior of osteoblast, adipocyte, and myoblast markers in genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 2002;31:205–211.

    Article  PubMed  CAS  Google Scholar 

  21. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 1994;15:439–461.

    PubMed  CAS  Google Scholar 

  22. Fedarko NS, Bianco P, Vetter U, Gehron Robey P. Human bone cell enzyme expression and cellular heterogeneity: correlation of alkaline phosphatase enzyme activity with cell cycle. J Cell Physiol 1990;144:115–121.

    Article  PubMed  CAS  Google Scholar 

  23. Cowles EA, DeRome ME, Pastizzo G, Brailey LL, Gronowicz GA. Mineralization and expression of matrix proteins during in vivo bone development. Calcif Tissue Int 1998;62:74–82.

    Article  PubMed  CAS  Google Scholar 

  24. Maenoa S, Nikia Y, Matsumotoa H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26:4847–4855.

    Article  Google Scholar 

  25. Xu SL, Li DC, Xie YZ, Lu JX, Dai KR. The growth of stem cells within β-TCP scaffolds in a fluid-dynamic environment. Mater Sci Engin 2008;C28:164–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-zheng Wang  (王坤正).

Additional information

Supported by the Doctoral Fund of Ministry of Education of China (No. 20070698083)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, My., Qiang, H., Yang, Hq. et al. In vitro and in vivo effects of puerarin on promotion of osteoblast bone formation. Chin. J. Integr. Med. 18, 276–282 (2012). https://doi.org/10.1007/s11655-012-1056-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-012-1056-4

Keywords

Navigation