Skip to main content
Log in

Lungenkarzinom

Molekulare Pathologie und personalisierte Therapie

  • Topic
  • Published:
best practice onkologie Aims and scope

Die Tumorimmuntherapie hat in den letzten Jahren rasante Fortschritte gemacht. So lieferten Studien zur Behandlung des Bronchialkarzinoms mit "cancer vaccines" wie dem melanomassoziierten Antigen A3 (MAGE-A3) und liposomalem BLP25 vielversprechende Ergebnisse in den Stadien IB/II und III des nichtkleinzelligen Bronchialkarzinoms. Immunmodulatorische Agenzien wie Talactoferrin oder Ipilimumab scheinen v. a. in Verbindung mit einer platinbasierten Chemotherapie zu wirken, was andeutet, dass insbesondere die Kombination von Immuntherapeutika, konventioneller Chemotherapie und tumorspezifischen, zielgerichteten Agenzien das größte therapeutische Zukunftspotenzial besitzt. Das genaue Verständnis der Interaktion zwischen Tumor und Immunsystem bleibt essenziell für die Identifizierung potenzieller Biomarker. Im Idealfall ermöglicht es auch im Bereich der Immuntherapie die Entwicklung gezielter Ansätze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

1

Literatur

  1. Macconaill LE (2012) Advancing personalized cancer medicine in lung cancer. Arch Pathol Lab Med 136:1210–1216

    Article  PubMed  Google Scholar 

  2. Molina JR et al (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    PubMed  Google Scholar 

  3. Schiller JH et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Article  PubMed  CAS  Google Scholar 

  4. Sandler A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  5. Shepherd FA et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  PubMed  CAS  Google Scholar 

  6. Mok TS et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  PubMed  CAS  Google Scholar 

  7. Rosell R et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967

    Article  PubMed  CAS  Google Scholar 

  8. Kwak EL et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  PubMed  CAS  Google Scholar 

  9. Sequist LV et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26

    Article  PubMed  Google Scholar 

  10. Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836

    Article  PubMed  CAS  Google Scholar 

  11. Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704–2715

    Article  PubMed  CAS  Google Scholar 

  12. Murala S et al (2010) Current status of immunotherapy for the treatment of lung cancer. J Thorac Dis 2:237–244

    PubMed  CAS  Google Scholar 

  13. Thomas A, Hassan R (2012) Immunotherapies for non-small-cell lung cancer and mesothelioma. Lancet Oncol 13:e301–e310

    Article  PubMed  CAS  Google Scholar 

  14. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171

    Article  PubMed  CAS  Google Scholar 

  15. Reck M (2012) What future opportunities may immuno-oncology provide for improving the treatment of patients with lung cancer? Ann Oncol 23 (Suppl 8):viii28–viii34

    Article  PubMed  Google Scholar 

  16. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  PubMed  CAS  Google Scholar 

  17. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  PubMed  CAS  Google Scholar 

  18. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    CAS  Google Scholar 

  19. Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1:220–228

    Google Scholar 

  20. Spadaro M et al (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22:2747–2757

    Article  PubMed  CAS  Google Scholar 

  21. Digumarti R et al (2011) A randomized, double-blind, placebo-controlled, phase II study of oral talactoferrin in combination with carboplatin and paclitaxel in previously untreated locally advanced or metastatic non-small cell lung cancer. J Thorac Oncol 6:1098–1103

    Article  PubMed  Google Scholar 

  22. Hayes TG et al (2006) Phase I trial of oral talactoferrin alfa in refractory solid tumors. Invest New Drugs 24:233–240

    Article  PubMed  CAS  Google Scholar 

  23. Parikh PM et al (2011) Randomized, double-blind, placebo-controlled phase II study of single-agent oral talactoferrin in patients with locally advanced or metastatic non-small-cell lung cancer that progressed after chemotherapy. J Clin Oncol 29:4129–4136

    Article  PubMed  CAS  Google Scholar 

  24. Butts C et al (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23:6674–6681

    Article  PubMed  CAS  Google Scholar 

  25. Nemunaitis J et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24:4721–4730

    Article  PubMed  CAS  Google Scholar 

  26. Nemunaitis J et al (2009) Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 16:620–624

    Article  PubMed  CAS  Google Scholar 

  27. Kong F et al (1999) Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86:1712–1719

    Article  PubMed  CAS  Google Scholar 

  28. Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100:2014–2021

    Article  PubMed  CAS  Google Scholar 

  29. Bolli M et al (2002) Tissue microarray evaluation of Melanoma antigen E (MAGE) tumor-associated antigen expression: potential indications for specific immunotherapy and prognostic relevance in squamous cell lung carcinoma. Ann Surg 236:785–793

    Article  PubMed  Google Scholar 

  30. Atanackovic D et al (2008) Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc Natl Acad Sci U S A 105:1650–1655

    Article  PubMed  CAS  Google Scholar 

  31. Atanackovic D et al (2004) Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J Immunol 172:3289–3296

    PubMed  CAS  Google Scholar 

  32. Grah J et al (2008) Immunohystochemical expression of cancer/testis antigens (MAGE-A3/4, NY-ESO-1) in non-small cell lung cancer: the relationship with clinical-pathological features. Coll Antropol 32:731–736

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schultheis.

Additional information

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultheis, A., Wolf, J. & Büttner, R. Lungenkarzinom. best practice onkologie 8, 20–27 (2013). https://doi.org/10.1007/s11654-013-0074-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-013-0074-9

Navigation