Skip to main content
Log in

Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are capable of self-renewing and differentiating into multiple tissues; they are expected to become a source of cells for regenerative therapy. Compared to allogeneic MSCs, autologous MSCs from patients needing cell-based therapy may be an ideal alternative stem cell source. However, characterizations of MSCs from a disease state remains extremely limited. Therefore, we have isolated and characterized MSCs from Parkinson’s disease (PD) patients and compared them with MSCs derived from normal adult bone marrow. Our results show that PD-derived MSCs are similar to normal MSCs in phenotype, morphology, and multidifferentiation capacity. Moreover, PD-derived MSCs are capable of differentiating into neurons in a specific medium with up to 30% having the characteristics of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation induced by mitogens. These findings indicate that MSCs derived from PD patients’ bone marrow may be a promising cell type for cellular therapy and somatic gene therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ahlskog J. E. Slowing Parkinson’s disease progression. Neurology 60: 381–389; 2003.

    PubMed  Google Scholar 

  • Barberi T.; Klivenyi P.; Calingasan N. Y.; Lee H.; Kawamata H.; Loonam K. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21: 1200–1207; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew A.; Sturgeon C.; Siatskas M.; Ferrer K.; McIntosh K.; Patil S. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42–48; 2002.

    Article  PubMed  Google Scholar 

  • Brazelton T. R.; Rossi F. M.; Keshet G. I.; Blau H. M; From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290: 1775–1779; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Conway K. A.; Harper J. D. Lansbury PTAccelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4: 1318–1320; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Dauer W.; Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39: 889–909; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Deans R. J.; Moseley A. B. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875–84; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M.; Kanno H.; Hoshino M.; Cho H.; Matsumoto N.; Itokazu Y. et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest. 113: 1701–1710; 2004.

    PubMed  CAS  Google Scholar 

  • Di Nicola M.; Carlo-Stella C.; Magni M.; Milanesi M.; Longoni P. D.; Matteucci P. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843; 2002.

    Article  PubMed  Google Scholar 

  • Dunnett S. B.; Bjorklund A; . Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399: A32–A39; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fang B.; Liao L.; Shi M.; Yang S.; Zhao R. C. Multipotency of Flk1+CD34+progenitors derived from human fetal bone marrow. J. Lab. Clin. Med. 143: 230–240; 2005.

    Article  Google Scholar 

  • Horwitz E. M.; Prockop D. J.; Fitzpatrick L. A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5: 309–313; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J. Levodopa strengths and weaknesses. Neurology 58: S19–S32; 2002.

    PubMed  CAS  Google Scholar 

  • Jiang Y.; Jahagirdar B. N.; Reinhardt R. L. et al. Pluripotency of mesenchymal stem cell derived from adult marrow. Nature 418: 41–49; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kasten P.; Vogel J.; Luginbühl R.; Niemeyer P.; Weiss S.; Schneider S. et al. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs 183: 68–79; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H.; Mizuseki K.; Nishikawa S.; Kaneko S.; Kuwana Y.; Nakanishi S. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 3140; 2000.

    Article  Google Scholar 

  • Koc O.; Lazarus H. Mesenchymal stem cells heading to the clinic. Bone Marrow Transplant. 27: 235–239; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kopen G. C.; Prockop D. J.; Phinney D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96: 10711–10716; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Krampera M.; Glennie S.; Dyson J.; Scott D.; Laylor R.; Simpson E. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Le Blanc K.; Rasmusson I.; Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439–1441; 2004.

    Article  PubMed  Google Scholar 

  • Lee S. H.; Lumelsky N.; Studer L.; Auerbach J. M.; McKay R. D. G. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol 18: 675–679; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Makino S.; Fukuda K.; Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697–705; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mezey E.; Chandross K. J.; Harta G.; Maki R. A.; Mckercher S. R. Turning blood into brain; cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Minguell J. J.; Conget P.; Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Braz. J. Med. Biol. Res. 33: 881–887; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Park S.; Lee K. S.; Lee Y. J.; Shin H. A.; Cho H. Y.; Wang K. C. et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett. 359: 99–103; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Perrier A. L.; Tabar V.; Barberi T.; Rubio M. E.; Bruses J.; Topf N. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101: 12543–12548; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Quinn N. P. Parkinson’s disease: clinical features. Baillieres Clin. Neurol. 6: 1–13; 1997.

    PubMed  CAS  Google Scholar 

  • Reyes M.; Lund T.; Lenvik T. et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615–2625; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sakurada K.; Ohshima-Sakurada M.; Palmer T. D.; Gage F. H. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126: 4017–4026; 1999.

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J.; Song S.; Cardozo-Pelaez F.; Hazzi C.; Stedeford T.; Willing A. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164: 247–256; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Seta Y.; Toyono T.; Takeda S.; Toyoshima K. Expression of Mash1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation. FEBS Lett. 444: 4346; 1999.

    Article  Google Scholar 

  • Tse W. T.; Pendleton J. D.; Beyer W. M.; Egalka M. C.; Guinan E. C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75: 389–397; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D; Schwarz E. J.; Prockop D. J.; Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61: 364–370; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H.; Huang Z.; Xu Y.; Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol. Res. 28: 104–112; 2006.

    Article  PubMed  Google Scholar 

  • Zhao L. R.; Duan W. M.; Reyes M. et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 174: 11–20; 2002.

    Article  PubMed  Google Scholar 

  • Zheng J. L.; Shou J.; Guillemot F.; Kageyama R.; Gao W. Q. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127: 4551–4560; 2000.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank all staff of department of Neurology of Dalian People Hospital for the donation and collection of bone marrow samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqing Zhang.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Wang, X. & Wang, S. Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease. In Vitro Cell.Dev.Biol.-Animal 44, 169–177 (2008). https://doi.org/10.1007/s11626-008-9093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9093-1

Keywords

Navigation