Skip to main content

Advertisement

Log in

Non-Traditional Risk Factors are Important Contributors to the Racial Disparity in Diabetes Risk: The Atherosclerosis Risk in Communities Study

  • Original Research
  • Published:
Journal of General Internal Medicine Aims and scope Submit manuscript

ABSTRACT

BACKGROUND

Traditional risk factors, particularly obesity, do not completely explain the excess risk of diabetes among African Americans compared to whites.

OBJECTIVE

We sought to quantify the impact of recently identified, non-traditional risk factors on the racial disparity in diabetes risk.

DESIGN

Prospective cohort study.

PARTICIPANTS

We analyzed data from 2,322 African-American and 8,840 white participants without diabetes at baseline from the Atherosclerosis Risk in Communities (ARIC) Study.

MAIN MEASURES

We used Cox regression to quantify the association of incident diabetes by race over 9 years of in-person and 17 years of telephone follow-up, adjusting for traditional and non-traditional risk factors based on literature search. We calculated the mediation effect of a covariate as the percent change in the coefficient of race in multivariate models without and with the covariate of interest; 95 % confidence intervals (95 % CI) were calculated using boot-strapping.

KEY RESULTS

African American race was independently associated with incident diabetes. Body mass index (BMI), forced vital capacity (FVC), systolic blood pressure, and serum potassium had the greatest explanatory effects for the difference in diabetes risk between races, with mediation effects (95 % CI) of 22.0 % (11.7 %, 42.2 %), 21.7 %(9.5 %, 43.1 %), 17.9 % (10.2 %, 37.4 %) and 17.7 % (8.2 %, 39.4 %), respectively, during 9 years of in-person follow-up, with continued effect over 17 years of telephone follow-up.

CONCLUSIONS

Non-traditional risk factors, particularly FVC and serum potassium, are potential mediators of the association between race and diabetes risk. They should be studied further to verify their importance and to determine if they mark causal relationships that can be addressed to reduce the racial disparity in diabetes risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Cowie CC, Rust KF, Ford ES, et al. Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care. 2009;32(2):287–94.

    Article  PubMed  Google Scholar 

  2. Signorello LB, Schlundt DG, Cohen SS, et al. Comparing diabetes prevalence between African Americans and Whites of similar socioeconomic status. Am J Public Health. 2007;97(12):2260–7.

    Article  PubMed  Google Scholar 

  3. Brancati FL, Kao WH, Folsom AR, Watson RL, Szklo M. Incident type 2 diabetes mellitus in African American and white adults: the Atherosclerosis Risk in Communities Study. JAMA. 2000;283(17):2253–9.

    Article  CAS  PubMed  Google Scholar 

  4. Raynor LA, Pankow JS, Duncan BB, Schmidt MI, Hoogeveen RC, Pereira MA, et al. Novel risk factors and the prediction of type 2 diabetes in the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care. 2013;36(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  5. The ARIC. Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol. 1989;129(4):687–702.

    Google Scholar 

  6. Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7):1799–805.

    Article  CAS  PubMed  Google Scholar 

  7. Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.

    CAS  PubMed  Google Scholar 

  8. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med. 1999;159(18):2151–9.

    Article  CAS  PubMed  Google Scholar 

  9. Chatterjee R, Yeh H, Shafi T, et al. Serum and dietary potassium and risk of incident type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Arch Intern Med. 2010;170:1745–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kodama S, Saito K, Yachi Y, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737–42.

    Article  CAS  PubMed  Google Scholar 

  11. Kramer CK, von Muhlen D, Jassal SK, Barrett-Connor E. Serum uric acid levels improve prediction of incident type 2 diabetes in individuals with impaired fasting glucose: the Rancho Bernardo Study. Diabetes Care. 2009;32(7):1272–3.

    Article  CAS  PubMed  Google Scholar 

  12. Folsom AR, Ma J, Eckfeldt JH, Nieto FJ, Metcalf PA, Barnes RW. Low serum albumin. Association with diabetes mellitus and other cardiovascular risk factors but not with prevalent cardiovascular disease or carotid artery intima-media thickness. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Ann Epidemiol. 1995;5(3):186–91.

    Article  CAS  PubMed  Google Scholar 

  13. Stevens J, Ahn K, Juhaeri, Houston D, Steffan L, Couper D. Dietary fiber intake and glycemic index and incidence of diabetes in African American and white adults: the ARIC study. Diabetes Care. 2002;25(10):1715–21.

    Article  CAS  PubMed  Google Scholar 

  14. Paynter NP, Yeh HC, Voutilainen S, et al. Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol. 2006;164(11):1075–84.

    Article  PubMed  Google Scholar 

  15. Carnethon MR, Yan L, Greenland P, et al. Resting heart rate in middle age and diabetes development in older age. Diabetes Care. 2008;31(2):335–9.

    Article  PubMed  Google Scholar 

  16. Duncan BB, Schmidt MI, Offenbacher S, Wu KK, Savage PJ, Heiss G. Factor VIII and other hemostasis variables are related to incident diabetes in adults. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 1999;22(5):767–72.

    Article  CAS  PubMed  Google Scholar 

  17. Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(2):455–61.

    Article  CAS  PubMed  Google Scholar 

  18. Tamariz LJ, Young JH, Pankow JS, et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2008;168(10):1153–60.

    Article  PubMed  Google Scholar 

  19. Yeh HC, Punjabi NM, Wang NY, Pankow JS, Duncan BB, Brancati FL. Vital capacity as a predictor of incident type 2 diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care. 2005;28(6):1472–9.

    Article  PubMed  Google Scholar 

  20. Weitzman S, Wang CH, Pankow JS, Schmidt MI, Brancati FL. Are measures of height and leg length related to incident diabetes mellitus? The ARIC (Atherosclerosis Risk in Communities) study. Acta Diabetol. 2010;47(3):237–42.

    Article  PubMed  Google Scholar 

  21. Vittinghoff E, Shiboski SC, McCullouch CE, Glidden DV. Regression Methods in Biostatistics: Linear, Logistic, Survival and Repeated Measures Models. New York, NY: Springer Science Business Media, Inc.; 2005.

    Google Scholar 

  22. Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet Med. 2010;27(9):977–87.

    Article  CAS  PubMed  Google Scholar 

  23. van den Borst B, Gosker HR, Zeegers MP, Schols AMWJ. Pulmonay function in diabetes: a metaanalysis. Chest. 2010;138:393–406.

    Article  PubMed  Google Scholar 

  24. Harik-Khan RI, Fleg JL, Muller DC, Wise RA. The effect of anthropometric and socioeconomic factors on the racial difference in lung function. Am J Respir Crit Care Med. 2001;164(9):1647–54.

    Article  CAS  PubMed  Google Scholar 

  25. Shafi T, Appel LJ, Miller ER, Klag MJ, Parekh RS. Changes in serum potassium mediate thiazide-induced diabetes. Hypertension. 2008;52:1022–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension. 2006;48(2):219–24.

    Article  CAS  PubMed  Google Scholar 

  27. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369(9557):201–7.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor EN, Hu FB, Curhan GC. Antihypertensive medications and the risk of incident type 2 diabetes. Diabetes Care. 2006;29(5):1065–70.

    Article  CAS  PubMed  Google Scholar 

  29. Heianza Y, Hara S, Arase Y, et al. Low serum potassium levels and risk of type 2 diabetes: the Toranomon Hospital Health Management Center Study 1 (TOPICS 1). Diabetologia. 2011;54(4):762–6.

    Article  CAS  PubMed  Google Scholar 

  30. Rowe JW, Tobin JD, Rosa RM, Andres R. Effect of experimental potassium deficiency on glucose and insulin metabolism. Metabolism. 1980;29(6):498–502.

    Article  CAS  PubMed  Google Scholar 

  31. Helderman JH, Elahi D, Andersen DK, et al. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes. 1983;32(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  32. He Q, Heo M, Heshka S, et al. Total body potassium differs by sex and race across the adult age span. Am J Clin Nutr. 2003;78(1):72–7.

    CAS  PubMed  Google Scholar 

  33. Turban S, Miller ER, Ange B, Appel LJ. Racial differences in urinary potassium excretion. J Am Soc Nephrol. 2008;19(7):1396–402.

    Article  PubMed  Google Scholar 

  34. Langford HG, Cushman WC, Hsu H. Chronic effect of KCl on black-white differences in plasma renin activity, aldosterone, and urinary electrolytes. Am J Hypertens. 1991;4(5 Pt 1):399–403.

    Article  CAS  PubMed  Google Scholar 

  35. Panel on Dietary Reference Intakes for Electrolytes and Water.Chapter 5. Potassium. In: Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC: NationalAcademies Press; 2004:186–268.

  36. Whelton PK, He J, Cutler JA, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277(20):1624–32.

    Article  CAS  PubMed  Google Scholar 

  37. Newby PK, Noel SE, Grant R, Judd S, Shikany JM, Ard J. Race and region are associated with nutrient intakes among black and white men in the United States. J Nutr. 2011;141(2):296–303.

    Article  CAS  PubMed  Google Scholar 

  38. Schneider AL, Pankow JS, Heiss G, Selvin E. Validity and reliability of self-reported diabetes in the atherosclerosis risk in communities study. Am J Epidemiol. 2012;176(8):738–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Contributors

The authors thank the staff and participants of the ARIC study for their important contributions.

Funders

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). Drs Yeh and Brancati were supported by a Diabetes Research & Training Center Grant from the NIDDK (P30 DK079637). Dr. Brancati was supported by a grant from the National Institutes of Health, NIDDK, Bethesda, MD (K24 DK62222).

Prior Presentations

Results from this manuscript were presented as an abstract in poster format at the 2011 Annual Scientific Sessions of the American Diabetes Association.

Conflict of Interest

The authors declare that they do not have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranee Chatterjee MD, MPH.

Appendix

Appendix

Figure 1.
figure 1

Conceptual model of the association between race and diabetes risk.

Table 5 Mediation Effects of All Potential Mediatorsa Considered on the Association Between Race and Risk of Incident Diabetes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, R., Brancati, F.L., Shafi, T. et al. Non-Traditional Risk Factors are Important Contributors to the Racial Disparity in Diabetes Risk: The Atherosclerosis Risk in Communities Study. J GEN INTERN MED 29, 290–297 (2014). https://doi.org/10.1007/s11606-013-2569-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11606-013-2569-z

KEY WORDS

Navigation