Skip to main content
Log in

Stem Cell Therapy for Heart Disease

  • Review Article
  • Published:
Journal of General Internal Medicine Aims and scope Submit manuscript

Abstract

Coronary artery disease is the leading cause of death in Americans. After myocardial infarction, significant ventricular damage persists despite timely reperfusion and pharmacological management. Treatment is limited, as current modalities do not cure this damage. In the past decade, stem cell therapy has emerged as a promising therapeutic solution to restore myocardial function. Clinical trials have demonstrated safety and beneficial effects in patients suffering from acute myocardial infarction, heart failure, and dilated cardiomyopathy. These benefits include improved ventricular function, increased ejection fraction, and decreased infarct size. Mechanisms of therapy are still not clearly understood. However, it is believed that paracrine factors, including stromal cell-derived factor-1, contribute significantly to stem cell benefits. The purpose of this article is to provide medical professionals with an overview on stem cell therapy for the heart and to discuss potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.

Similar content being viewed by others

REFERENCES

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220.

    Article  PubMed  Google Scholar 

  2. Jezierska-Wozniak K, Mystkowska D, Tutas A, Jurkowski MK. Stem cells as therapy for cardiac disease-a review. Folia Histochem Cytobiol. 2011;49:13–25.

    PubMed  Google Scholar 

  3. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.

    Article  PubMed  CAS  Google Scholar 

  4. Guidry UC, Evans JC, Larson MG, Wilson PW, Murabito JM, Levy D. Temporal trends in event rates after Q-wave myocardial infarction: the Framingham Heart Study. Circulation. 1999;100:2054–9.

    Article  PubMed  CAS  Google Scholar 

  5. Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Welsh RC, McAlister FA. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol. 2009;53:13–20.

    Article  PubMed  Google Scholar 

  6. Rosenstrauch D, Poglajen G, Zidar N, Gregoric ID. Stem cell therapy for ischemic heart failure. Tex Heart Inst J. 2005;32:339–47.

    PubMed  Google Scholar 

  7. Flynn A, O’Brien T. Stem cell therapy for cardiac disease. Expert Opin Biol Ther. 2011;11:177–87.

    Article  PubMed  Google Scholar 

  8. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.

    Article  PubMed  CAS  Google Scholar 

  9. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  PubMed  CAS  Google Scholar 

  10. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res. 2003;92:139–50.

    Article  PubMed  CAS  Google Scholar 

  11. Strauer BE, Schannwell CM, Brehm M. Therapeutic potentials of stem cells in cardiac diseases. Minerva Cardioangiol. 2009;57:249–67.

    PubMed  CAS  Google Scholar 

  12. Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167:989–97.

    Article  PubMed  Google Scholar 

  13. Lipinski MJ, Biondi-Zoccai GG, Abbate A, et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol. 2007;50:1761–7.

    Article  PubMed  Google Scholar 

  14. Kuswardhani RA, Soejitno A. Bone marrow-derived stem cells as an adjunctive treatment for acute myocardial infarction: a systematic review and meta-analysis. Acta Med Indones. 2011;43:168–77.

    PubMed  Google Scholar 

  15. Shiba Y, Hauch KD, Laflamme MA. Cardiac applications for human pluripotent stem cells. Curr Pharm Des. 2009;15:2791–806.

    Article  PubMed  CAS  Google Scholar 

  16. Joggerst SJ, Hatzopoulos AK. Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev Mol Med. 2009;11:1–19.

    Article  Google Scholar 

  17. Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells intro the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol. 2006;40:195–200.

    Article  PubMed  CAS  Google Scholar 

  18. Wu KH, Zhou B, Yu CT, et al. Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. Ann Thorac Surg. 2007;83:1491–8.

    Article  PubMed  Google Scholar 

  19. Mozid AM, Arnous S, Sammut EC, Mathur A. Stem cell therapy for heart disease. Br Med Bull. 2011;98:143–59.

    Article  PubMed  Google Scholar 

  20. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  PubMed  CAS  Google Scholar 

  21. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100:12313–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wei HM, Wong P, Hsu LF, Shim W. Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions. Singapore Med J. 2009;50:935–42.

    PubMed  CAS  Google Scholar 

  23. Krause K, Schneider C, Kuck KH, Jaquet K. Review: stem cell therapy in cardiovascular disorders. Cardiovas Ther. 2010;28:e101–10.

    Article  Google Scholar 

  24. Dimmeler S, Burchfield J, Zeiher AM. Cell-based therapy of myocardial infarction. Arterioscler Thromb Vasc Biol. 2008;28:208–16.

    Article  PubMed  CAS  Google Scholar 

  25. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. 2005;102:11474–9.

    Article  PubMed  CAS  Google Scholar 

  26. Van’t Hof W, Mal N, Huang Y, et al. Direct delivery of syngeneic and allogeneic large-scale expanded multipotent adult progenitor cells improves cardiac function after myocardial infarct. Cytotherapy. 2007;9:477–87.

    Article  Google Scholar 

  27. Penn MS, Ellis S, Gandhi S, et al. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: Phase I clinical study. Circ Res. 2012;110:304–11.

    Article  PubMed  CAS  Google Scholar 

  28. Wu KH, Mo XM, Han ZC, Zhou B. Stem cell engraftment and survival in the ischemic heart. Ann Thorac Surg. 2011;92:1917–25.

    Article  PubMed  Google Scholar 

  29. Strauer BE, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart from the methodological origin to clinical practice. J Am Coll Cardiol. 2011;58:1095–104.

    Article  PubMed  Google Scholar 

  30. Suzuki K, Murtuza B, Beauchamp JR, et al. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J. 2004;18:1153–5.

    PubMed  CAS  Google Scholar 

  31. ter Horst KW. Stem cell therapy for myocardial infarction: are we missing time? Cardiology. 2010;117:1–10.

    Article  PubMed  Google Scholar 

  32. Kupatt C, Hinkel R, Lamparter M, et al. Retroinfusion of embryonic endothelial progenitor cells attenuates ischemia-reperfusion injury in pigs: role of phosphatidylinositol 3-kinase/AKT Kinase. Circulation. 2005;112:I-117–22.

    Google Scholar 

  33. Askari AT, Unzek S, Popvic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362:697–703.

    Article  PubMed  CAS  Google Scholar 

  34. Nygren J, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10:494–501.

    Article  PubMed  CAS  Google Scholar 

  35. Penn MS, Mayorga ME. Searching for understanding with the cellular lining of life. Circ Res. 2010;106:1554–6.

    Article  PubMed  CAS  Google Scholar 

  36. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.

    Article  PubMed  CAS  Google Scholar 

  37. Penn MS, Dong F, Klein S, Mayora ME. Stem cells for myocardial regeneration. Clin Pharm Ther. 2011;90:499–501.

    Article  CAS  Google Scholar 

  38. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98:1414–21.

    Article  PubMed  CAS  Google Scholar 

  39. Ceradini DJ, Kulkarni AR, Callagan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.

    Article  PubMed  CAS  Google Scholar 

  40. Yamaguchi J, Kusano KF, Mauo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endoethlial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107:1322–8.

    Article  PubMed  CAS  Google Scholar 

  41. Penn MS. Importance of the SDF-1: CXCR4 axis in myocardial repair. Circ Res. 2009;104:1133–5.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang M, Mal N, Kiedrowski M, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21:3197–207.

    Article  PubMed  CAS  Google Scholar 

  43. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.

    Article  PubMed  Google Scholar 

  44. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.

    Article  PubMed  Google Scholar 

  45. Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44:1690–9.

    Article  PubMed  Google Scholar 

  46. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    Article  PubMed  Google Scholar 

  47. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology. 2004;94:92–5.

    Article  PubMed  Google Scholar 

  48. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res. 2004;95:742–8.

    Article  PubMed  CAS  Google Scholar 

  49. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction. Circulation. 2005;112:I-178–83.

    Google Scholar 

  50. Ruan W, Pan CZ, Huang GQ, Li YL, Ge JB, Shu XH. Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J (Engl). 2005;118:1175–81.

    Google Scholar 

  51. Schachinger V, Erbs S, Elasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.

    Article  PubMed  CAS  Google Scholar 

  52. Assmus B, Rolf A, Erbs S, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3:89–96.

    Article  PubMed  Google Scholar 

  53. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Eng J Med. 2006;355:1199–209.

    Article  CAS  Google Scholar 

  54. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.

    Article  PubMed  Google Scholar 

  55. Huikuri HV, Kervinen K, Niemala M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.

    Article  PubMed  Google Scholar 

  56. Krause K, Jaquet K, Schneider C, et al. Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart. 2009;95:1145–52.

    Article  PubMed  CAS  Google Scholar 

  57. Tendera M, Wojakowski W, Ruzytto W, et al. Intracoronary infusion of bone marrow-derived selected CD34 + CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21.

    Article  PubMed  Google Scholar 

  58. Gyongyosi M, Lang I, Dettke M, et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomised study. Nat Clin Pract Cardiovasc Med. 2009;6:70–81.

    Article  PubMed  Google Scholar 

  59. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    Article  PubMed  CAS  Google Scholar 

  60. Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTime randomized trial. JAMA. 2011;306:2110–9.

    Article  PubMed  CAS  Google Scholar 

  61. Houtgraaf JH, den Dekker WK, van Dalen BM, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:539–40.

    Article  PubMed  Google Scholar 

  62. Osiris Therapeutics. Prochymal significantly reduces hypertrophy, arrhythmia and progression to heart failure in patients suffering a heart attack. July 2 2012. Available at: http://www.osiris.com/pdf/2012-07-02%20Interim%20Cardiac%20Results.pdf Accessed April 21, 2013.

  63. Traverse JH, Henry TD, Vaughan DE, et al. Rationale and design for TIME: a phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells following acute myocardial infarction. Am Heart J. 2009;158:356–63.

    Article  PubMed  Google Scholar 

  64. Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;1–10.

  65. Surder D. Intracoronary infusion of BM-MNC early or late after AMI- 4 months results of the SWISS-AMI trial: 2012 Scientific sessions of the AHA- late breaking trials. November 2012. Available at: http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_446442.pdf Accessed April 21, 2013.

  66. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–9.

    Article  PubMed  Google Scholar 

  67. Fuchs S, Satler LF, Kornowski R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease. J Am Coll Cardiol. 2003;41:1721–4.

    Article  PubMed  Google Scholar 

  68. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294–302.

    Article  PubMed  Google Scholar 

  69. Stamm C, Kleine HD, Westphal B, et al. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg. 2004;52:152–8.

    Article  PubMed  CAS  Google Scholar 

  70. Erbs S, Linke A, Adams V, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion. Circ Res. 2005;97:756–62.

    Article  PubMed  CAS  Google Scholar 

  71. Patel AN, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thoarc Cardiovasc Surg. 2005;130:1631–8.

    Article  Google Scholar 

  72. Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: The IACT Study. J Am Coll Cardiol. 2005;46:1651–8.

    Article  PubMed  Google Scholar 

  73. Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Eng J Med. 2006;355:1222–32.

    Article  CAS  Google Scholar 

  74. Hendrikx M, Hensen K, Clijsters C, et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation. 2006;114:I-101–7.

    Article  Google Scholar 

  75. Tse HF, Thambar S, Kwong YL, et al. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur Heart J. 2007;28:2998–3005.

    Article  PubMed  Google Scholar 

  76. Ang KL, Chin D, Leyva F, et al. Randomized controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium. Nat Clin Pract Cardiovasc Med. 2008;5:663–70.

    Article  PubMed  Google Scholar 

  77. Yao K, Huang R, Qian J, et al. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart. 2008;94:1147–53.

    Article  PubMed  CAS  Google Scholar 

  78. Dib N, Dinsmore J, Lababidi Z, et al. One-year follow-up of feasibility and safety of the first U.S., randomized controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). J Am Coll Cardiol Intv. 2009;2:9–16.

    Article  Google Scholar 

  79. Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail. 2010;12:721–9.

    Article  PubMed  Google Scholar 

  80. Gutierrez E, Sanz-Ruiz R, Alvarez EV, et al. General overview of the seventh international symposium on stem cell therapy and cardiovascular innovations. J Cardiovasc Transl Res. 2011;4:115–20.

    Article  PubMed  Google Scholar 

  81. Losordo DW, Henry TD, Davidson C, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109:428–36.

    Article  PubMed  CAS  Google Scholar 

  82. Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.

    Article  PubMed  Google Scholar 

  83. Bolli R, Chugh A, D’Amario D, et al. Effect of cardiac stem cells in patients with ischemic cardiomyopathy: Interim results of the SCIPIO Trial up to 2 years after therapy [abstract]. Late-breaking clinical trials: Cell-based therapies for myocardial regeneration. November 2012. Available at http://newsroom.heart.org/pr/aha/document/LBCT05-05-SCIPIO-abstract.pdf Accessed April 21, 2013.

  84. Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.

    Article  PubMed  Google Scholar 

  85. Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: The FOCUS-CCTRN Trial. JAMA. 2012;307:1717–26.

    Article  PubMed  CAS  Google Scholar 

  86. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON Randomized Trial. JAMA. 2012;1–11.

  87. Seth S, Narang R, Bhargava B, et al. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) Trial. J Am Coll Cardiol. 2006;48:2350–1.

    Article  PubMed  Google Scholar 

  88. Fischer-Rasokat U, Assmus B, Seeger FH, et al. A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circulation. 2009;2:417–23.

    PubMed  CAS  Google Scholar 

  89. Barts & The London NHS Trust. Bone marrow derived adult stem cells for acute anterior myocardial infarction (REGEN-AMI). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00765453?term=nct00765453&rank=1 NLM Identifier: NCT00765453.

  90. Angioblast Systems. Safety study of allogeneic mesenchymal precursor cells (MPCs) in subjects with recent acute myocardial infarction. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00555828?term=nct00555828&rank=1 NLM Identifier: NCT00555828.

  91. Osiris Therapeutics. Prochymal (human adult stem cells) intravenous infusion following acute myocardial infarction (AMI). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00877903?term=nct00877903&rank=1 NLM Identifier: NCT00877903.

  92. Cytori Therapeutics. Safety and efficacy of ADRCs delivered via the intracoronary route in the treatment of patients with ST-elevation acute myocardial infarction (ADVANCE). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01216995?term=nct01216995&rank=1 NLM Identifier: NCT01216995.

  93. Barts & The London NHS Trust. BAMI. The effect of intracoronary reinfusion of bone marrow-derived mononuclear cells (BM-MNC) on all cause mortality in acute myocardial infarction. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01569178?term=BAMI+trial&rank=1 NLM Identifier: NCT01569178.

  94. Capricor Inc. Allogeneic heart stem cells to achieve myocardial regeneration (ALLSTAR). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01458405?term=nct01458405&rank=1 NLM Identifier: NCT01458405.

  95. Cedars-Sinai Medical Center. Randomized evaluation of intracoronary transplantation of bone marrow stem cells in myocardial infarction (REVITALIZE). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00874354?term=nct00874354&rank=1 NLM Identifier: NCT00874354.

  96. Miltenyi Biotec GmbH. Intramyocardial transplantation of bone marrow stem cells in addition to coronary artery bypass graft (CABG) surgery (PERFECT). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00950274?term=nct00950274&rank=1 NLM Identifier: NCT00950274.

  97. Barts & The London NHS Trust. Bone marrow derived adult stem cells for chronic heart failure (REGEN-IHD). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00747708?term=nct00747708&rank=1 NLM Identifier: NCT00747708.

  98. Centre hospitalier de l’Universite de Montreal (CHUM). IMPACT-CABG Trial: Implantation of autologous CD133+ stem cells in patients undergoing CABG. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01033617?term=nct01033617&rank=1 NLM Identifier: NCT01033617.

  99. Juventas Therapeutics, Inc. Study to evaluate the safety and efficacy of JVS-100 administered to adults with ischemic heart failure. (STOP-HF). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01643590?term=stop-hf&rank=2 NLM Identifier: NCT01643590.

  100. Barts & The London NHS Trust. Bone marrow derived adult stem cells for dilated cardiomyopathy (REGENERATE-DCM). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01302171?term=nct01302171&rank=1 NLM Identifier: NCT01302171.

  101. Johann Wolfgang Goethe University Hospitals. Long-term evaluation of patients receiving bone marrow-derived cell administration for heart disease (BMC registry). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 April 21]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00962364?term=nct00962364&rank=1 NLM Identifier: NCT00962364.

Download references

Acknowledgements

There are no contributors, funders, or prior presentations for this manuscript.

Conflicts of Interest

Shannon Puliafico and Dr. Silver do not have any conflicts of interests. Dr. Penn is named as an inventor on patent applications submitted by The Cleveland Clinic Foundation for the use of SDF-1 to prevent and treat tissue injury. He is the founder and CMO of Juventas Therapeutics, Inc., which has licensed the use of these patents for the commercial development of SDF-1 to prevent and treat tissue injury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin H. Silver MD, FACC, FSCAI, FASNC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puliafico, S.B., Penn, M.S. & Silver, K.H. Stem Cell Therapy for Heart Disease. J GEN INTERN MED 28, 1353–1363 (2013). https://doi.org/10.1007/s11606-013-2508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11606-013-2508-z

KEY WORDS

Navigation