Skip to main content
Log in

Isoflurane enhances the expression of cytochrome C by facilitation of NMDA receptor in developing rat hippocampal neurons in vitro

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study examined the effects of clinically relevant concentrations of isoflurane on the amplitude of NMDA receptor current (INMDA) and the expression of cytochrome C in cultured developing rat hippocampal neurons. The hippocampi were dissected from newborn Sprague-Dawley rats. Hippocampal neurons were primarily cultured for 5 days and then treated with different concentrations of isoflurane [(0.25, 0.5, 0.75, 1 minimum alveolar concentration (MAC))]. The peak of INMDA was recorded by means of the whole cell patch clamp technique. The cytochrome C level was detected by Western blotting and quantitative real-time PCR. Our results showed that isoflurane (0.25, 0.5, 0.75 and 1 MAC) potentiated the amplitude of INMDA by (116±8.8)%, (122±11.7)%, (135±14.3)% and (132±14.6)%, respectively, and isoflurane increased the mRNA expression of cytochrome C in a concentration-dependent manner. The cytochrome C mRNA expression reached a maximum after 0.5 MAC isoflurane stimulation for 6 h (P<0.05). It was concluded that isoflurane enhances the expression of cytochrome C in cultured rat hippocampal neurons, which may be mediated by facilitation of NMDA receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JQ, Cammarata PR, Baines CP, et al. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta, 2009,1793(10):1540–1570

    Article  PubMed  CAS  Google Scholar 

  2. Tamilselvan J, Jayaraman G, Sivarajan K, et al. Age-dependent upregulation of p53 and cytochrome C release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med, 2007,43(12):1656–1669

    Article  PubMed  CAS  Google Scholar 

  3. Zemlyak I, Sapolsky R, Gozes I. NAP protects against cytochrome C release: inhibition of the initiation of apoptosis. Eur J Pharmacol, 2009,618(1–3):9–14

    Article  PubMed  CAS  Google Scholar 

  4. Mohan S, Abdul AB, Abdelwahab SI, et al. Typhonium flagelliforme induces apoptosis in CEMss cells via activation of caspase-9, PARP cleavage and cytochrome c release: its activation coupled with G0/G1 phase cell cycle arrest. J Ethnopharmacol, 2010,131(3):592–600

    Article  PubMed  Google Scholar 

  5. Xiang Q, Tan L, Zhao YL, et al. Isoflurane enhances spontaneous Ca(2+) oscillations in developing rat hippocampal neurons in vitro. Acta Anaesthesiol Scand, 2009,53(6):765–773

    Article  PubMed  CAS  Google Scholar 

  6. Zhang G, Dong Y, Zhang B, et al. Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci, 2008,28(17):4551–4560

    Article  PubMed  CAS  Google Scholar 

  7. Xiang Q, Tan L, Zhao Y, et al. Ketamine: the best partner for isoflurane in neonatal anesthesia? Med Hypotheses, 2008,71(6):868–871

    Article  PubMed  CAS  Google Scholar 

  8. Wei H, Liang G, Yang H, et al. The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology, 2008,108(2):251–260

    Article  PubMed  CAS  Google Scholar 

  9. Niizuma K, Yoshioka H, Chen H, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta, 2010,1802(1): 92–99

    PubMed  CAS  Google Scholar 

  10. Zhang Y, Dong Y, Wu X, et al. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem, 2010,285(6):4025–4037

    Article  PubMed  CAS  Google Scholar 

  11. Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci, 2007,8(6):413–426

    Article  PubMed  CAS  Google Scholar 

  12. Carroll RC, Zukin RS. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci, 2002,25(11):571–577

    Article  PubMed  CAS  Google Scholar 

  13. Yu SY, Wu DC, Liu L, et al. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem, 2008, 106(2):889–899

    Article  PubMed  CAS  Google Scholar 

  14. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 2010,11(10): 682–696

    Article  PubMed  CAS  Google Scholar 

  15. Lamsa K, Palva JM, Ruusuvuori E, et al. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. J Neurophysiol, 2000,83(1):359–366

    PubMed  CAS  Google Scholar 

  16. Xie Z, Herring BE, Fox AP. Excitatory and inhibitory actions of isoflurane in bovine chromaffin cells. J Neurophysiol, 2006,96(6):3042–3050

    Article  PubMed  CAS  Google Scholar 

  17. Yuantao LI, Changbin KE, Jingli YANG, et al. The effect of nitrous oxide and isoflurane on the total RNA yield from the cochlea of the rats. J Huazhong Univ Sci Technol [Med Sci], 2007,27(5):614–616

    Article  CAS  Google Scholar 

  18. Ni MR, O’Gorman DA. Anesthesia in pregnant patients for nonobstetric surgery. J Clin Anesth, 2006,18(1):60–66

    Article  Google Scholar 

  19. Pugh JR, Jahr CE. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci, 2011,31(2):565–574

    Article  PubMed  CAS  Google Scholar 

  20. Leinekugel X, Medina I, Khalilov I, et al. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron, 1997,18(2):243–255

    Article  PubMed  CAS  Google Scholar 

  21. Inan S, Wei H. The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth Analg, 2010, 111(6):1400–1410

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi T, Kuroda S, Tada M, et al. Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res, 2003,960(1–2):62–70

    Article  PubMed  CAS  Google Scholar 

  23. Ferrand-Drake M, Zhu C, Gido G, et al. Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. J Neurochem, 2003,85(6):1431–1442

    Article  PubMed  CAS  Google Scholar 

  24. Brambrink AM, Evers AS, Avidan MS, et al. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology, 2010,112(4):834–841

    Article  PubMed  CAS  Google Scholar 

  25. Mazoit JX, Roulleau P, Baujard C. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain: isoflurane or ischemia-reperfusion? Anesthesiology, 2010,113(5):1245–1246

    Article  PubMed  Google Scholar 

  26. Yuan Q, Ray RM, Johnson LR. Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome C. Am J Physiol Cell Physiol, 2002,282(6):C1290–C1299

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailin Luo  (罗爱林).

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 30772086; No. 30901390).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Jin, X., Wang, J. et al. Isoflurane enhances the expression of cytochrome C by facilitation of NMDA receptor in developing rat hippocampal neurons in vitro . J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 779–783 (2011). https://doi.org/10.1007/s11596-011-0676-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0676-9

Key words

Navigation