Skip to main content
Log in

Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miura N, Kurosawa H, Hasei M, Lu G, Yamazoe N (1996) Solid State Ion 86–88:1069–1073

    Article  Google Scholar 

  2. Somov S, Reinhardt G, Guth U, Goepel W (1996) Sens Actuators B 35–36:409–418

    Article  Google Scholar 

  3. Lu G, Miura N, Yamazoe N (1998) Ionics 4:16–24

    Article  CAS  Google Scholar 

  4. Miura N, Lu G, Yamazoe N (1998) Sens Actuators B 52:169–178

    Article  Google Scholar 

  5. Menil F, Coillard V, Lucat C (2000) Sens Actuators B 67:1–23

    Article  Google Scholar 

  6. Zhuiykov S, Nakano T, Kunimoto A, Yamazoe N, Miura N (2001) Electrochem Commun 3:97–101

    Article  CAS  Google Scholar 

  7. Miura N, Zhuiykov S, Ono T, Hasei M, Yamazoe N (2002) Sens Actuators B 83:222–229

    Article  Google Scholar 

  8. Guth U, Zosel J (2004) Ionics 10:366–377

    Article  CAS  Google Scholar 

  9. Di Bartolomeo E, Kaabbuathong N, Grilli ML, Traversa E (2004) Solid State Ion 171:173–181

    Article  Google Scholar 

  10. Szabo NF, Dutta PK (2004) Solid State Ion 171:183–190

    Article  CAS  Google Scholar 

  11. Ono T, Hasei M, Kunimoto A, Miura N (2004) Solid State Ion 175:503–506

    Article  CAS  Google Scholar 

  12. Miura N, Wang J, Nakatou M, Elumalai P, Hasei M (2005) Electrochem Solid State Lett 8:H9–H11

    Article  CAS  Google Scholar 

  13. West DL, Montgomery FC, Armstrong TR (2005) Sens Actuators B 106:758–765

    Article  Google Scholar 

  14. Elumalai P, Wang J, Zhuiykov S, Terada D, Hasei M, Miura N (2005) J Electrochem Soc 152:H95–H101

    Article  CAS  Google Scholar 

  15. Elumalai P, Miura N (2005) Solid State Ion 176:2517–2522

    Article  CAS  Google Scholar 

  16. Miura N, Wang J, Nakatou M, Elumalai P, Zhuiykov S, Hasei M (2006) Sens Actuators B 114:903–909

    Article  Google Scholar 

  17. Wang J, Elumalai P, Terada D, Hasei M, Miura N (2006) Solid State Ion 177:2305–2311

    Article  CAS  Google Scholar 

  18. Elumalai P, Plashnitsa VV, Ueda T, Hasei M, Miura N (2006) Ionics 12:331–337

    Article  CAS  Google Scholar 

  19. Yoo J, Chatterjee S, Wachsman ED (2007) Sens Actuators B 122:644–652

    Article  Google Scholar 

  20. Plashnitsa VV, Ueda T, Miura N (2006) Rare Metal Mat Eng 35:36–39

    CAS  Google Scholar 

  21. Montmeat P, Marchand JC, Lalauze R, Viricelle JP, Tournier G, Pijolat C (2003) Sens Actuators B 95:83–89

    Article  Google Scholar 

  22. Thiemann S, Hartung R, Wulff H, Klimke J, Möbius HH, Guth U, Schönauer U (1996) Solid State Ion 86–88:873–876

    Article  Google Scholar 

  23. Guillet N, Lalauze R, Pijolat C (2004) Sens Actuators B 98:130–139

    Article  Google Scholar 

  24. Zosel J, Ahlborn K, Müller R, Westphal D, Vaschook V, Guth U (2004) Solid State Ion 169:115–119

    Article  CAS  Google Scholar 

  25. Zosel J, Westphal D, Jakobs S, Müller R, Guth U (2002) Solid State Ion 152–153:525–529

    Article  Google Scholar 

  26. Zosel J, Schiffel G, Gerlach F, Ahlborn K, Sasum U, Vaschook V, Guth U (2006) Solid State Ion 177:2301–2304

    Article  CAS  Google Scholar 

  27. Di Bartolomeo E, Kaabbuathong N, D’Epifanio A, Grilli ML, Traversa E, Aono H, Sadaoka Y (2004) J Europ Ceram Soc 24:1187–1190

    Article  Google Scholar 

  28. Yoon JW, Grilli ML, Di Bartolomeo E, Polini R, Traversa E (2001) Sens Actuators B 76:483–488

    Article  Google Scholar 

  29. Xiong W, Kale GM (2006) Sens Actuators B 119:409–414

    Article  Google Scholar 

  30. Xiong W, Kale GM (2006) Sens Actuators B 114:101–108

    Article  Google Scholar 

  31. Plashnitsa VV, Ueda T, Miura N (2006) Int J Appl Ceram Technol 3:127–133

    Article  CAS  Google Scholar 

  32. Brosha EL, Mukundan R, Lujan R, Garzon FH (2006) Sens Actuators B 119:398–408

    Article  Google Scholar 

  33. Powell CJ, Erickson NE, Jach T (1982) J Vac Sci Technol 20:625

    Article  Google Scholar 

  34. Crist BV (2000) Handbook of monochromatic XPS spectra: the elements and native oxides. Wiley, New York

    Google Scholar 

  35. Salvati L, Makovsky LE, Stencel JM, Brown FR, Hercules DM (1981) J Phys Chem 85:3700–3707

    Article  CAS  Google Scholar 

  36. Reguig BA, Regragui M, Morsli M, Khelil A, Addou M, Bernede JC (2006) Solar Sci Mat Solar Cells 90:1381–1392

    Article  CAS  Google Scholar 

  37. Miura N, Nakatou M, Zhuiykov S (2003) Sens Actuators B 93:221–228

    Article  Google Scholar 

  38. Miura N, Nakatou M, Zhuiykov S (2002) Electrochem Commun 4:284–287

    Article  CAS  Google Scholar 

  39. Pireaux JJ, Chtaib M, Pelrue JP, Thiry PA, Liehr M, Caudano R (1984) Surf Sci 141:221–232

    Article  CAS  Google Scholar 

  40. Legare P, Hilaire L, Sotto M, Maire G (1980) Surf Sci 91:175–186

    Article  CAS  Google Scholar 

  41. Eley DD, Moore PB (1978) Surf Sci 76:L599–L602

    Article  CAS  Google Scholar 

  42. Canning NDS, Outka D, Madix RJ (1984) Surf Sci 141:240–254

    Article  CAS  Google Scholar 

  43. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113–122

    Article  CAS  Google Scholar 

  44. Chester MA, Samorjai GA (1975) Surf Sci 52:21–28

    Article  Google Scholar 

  45. Morrison SR (1987) Sensors Actuators 12:425–440

    Article  CAS  Google Scholar 

  46. Schrader ME (1977) J Colloid Interface Sci 59:456–460

    Article  CAS  Google Scholar 

  47. Bartram ME, Koel BE (1989) Surf Sci 213:137–156

    Article  CAS  Google Scholar 

  48. Wickham DT, Banse BA, Koel BE (1990) Catal Lett 6:163–172

    Article  CAS  Google Scholar 

  49. Lu X, Xu X, Wang N, Zhang Q (1999) J Phys Chem A 103:10969–10974

    Article  CAS  Google Scholar 

  50. Liu H, Kozlov AI, Kozlova AP, Shida T, Ywasawa Y (1999) Phys Chem Chem Phys 1:2851–2860

    Article  CAS  Google Scholar 

  51. Horvath D, Toth L, Guczi L (2000) Catal Lett 67:117–128

    Article  CAS  Google Scholar 

  52. Guczi L, Horvath D, Paszti Z, Peto G (2002) Catal Today 72:101–105

    Article  CAS  Google Scholar 

  53. Grzybowska-Swierkosz B (2006) Catal Today 112:3–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported through “The Grant-in-Aid for Scientific Research on Priority Area, Nanoionics (439)”, by MEXT. The authors kindly acknowledge Centre of Advanced Instrumental Analysis of the Kyushu University and Dr. Y. Miura for helpful support in XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plashnitsa, V.V., Ueda, T., Elumalai, P. et al. Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode. Ionics 14, 15–25 (2008). https://doi.org/10.1007/s11581-007-0158-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0158-z

Keywords

Navigation