Skip to main content
Log in

A-site deficient lanthanum-calcium chromite-titanates doped with 3d transition metals: synthesis, oxygen nonstoichiometry, electrical conductivity, and catalytic activity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Six \( {\text{La}}_{{0.4}} {\text{Ca}}_{{0.5}} {\text{Ti}}_{{0.5}} {\text{Cr}}_{{0.4}} {\text{M}}_{{0.1}} {\text{O}}_{{3 - \delta }} \) (M = Cr, Mn, Fe, Co, Ni, Cu) and two \( {\text{La}}_{{0.4}} {\text{Ca}}_{{0.4}} {\text{Ti}}_{{0.4}} {\text{Cr}}_{{0.4}} {\text{M}}_{{0.2}} {\text{O}}_{{3 - \delta }} \) (M = Ni, Cu) single-phase compositions were prepared by conventional solid-state reactions. Oxygen nonstoichiometry, electrical conductivity, phase transformations under reduction-reoxidation at high temperatures and catalytic activity for hydrocarbons oxidation of these compositions were investigated in a wide temperature and oxygen partial pressure range. The Cu-, Ni-, Co-, and Fe-containing compositions are decomposed in reducing Ar/H2O/H2 atmosphere with pH2O / pH2 = 0.3 at 1,000 °C, while the Cr- and Mn-containing ceramics remain stable at the same conditions. The metallic particles of the added 3d elements formed after decomposition were registered by X-ray diffraction method in case of Cu- and Ni-containing compositions. These formed composites can be completely reoxidized with formation of initial compositions by treatment in air at 1,000 °C. The electrical conductivity of the ceramics investigated in air and Ar/H2O/H2 gas flow increases with rising M content. The highest catalytic activity for oxidation of CH4 and C3H6, which was comparable with the activity of the \( {\text{La}}_{{0.4}} {\text{Ca}}_{{0.5}} {\text{Ti}}_{{0.5}} {\text{Cr}}_{{0.5}} {\text{O}}_{{3 - \delta }} + 5\% {\text{NiO}} \) composite, shows the Cu-containing powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tanasescu S, Berger D, Neiner D, Totir ND (2003) Solid State Ion 157:365

    Article  CAS  Google Scholar 

  2. Flandermeyer BK, Nasrallah MN, Agarwal AK, Anderson HU (1984) J Am Ceram Soc 67:195

    Article  CAS  Google Scholar 

  3. Karim DP, Aldred AD (1979) Phys Rev B 20:2255

    Article  CAS  Google Scholar 

  4. Yasuda I, Hishinuma M (1995) Solid State Ion 80:141

    Article  CAS  Google Scholar 

  5. Peck D-H, Miller M, Hilpert K (2001) Solid State Ion 143:401

    Article  CAS  Google Scholar 

  6. van Hassel BA, Kawada T, Sakai N, Yokokawa H, Dokiya M (1993) Solid State Ion 66:41

    Article  CAS  Google Scholar 

  7. Marina OA, Canfield NL, Stevenson JW (2002) Solid State Ion 149:21

    Article  CAS  Google Scholar 

  8. Mitchell H, Chakhmouradian AR (1999) J Solid State Chem 144:81

    Article  CAS  Google Scholar 

  9. Kennedy BJ, Howard CJ, Thorogood GJ, Mestre MAT, Hester JR (2000) J Solid State Chem 155:455

    Article  CAS  Google Scholar 

  10. Li G, Kuang X, Tian Sh, Liao F, Jing X, Uesu Y, Kohn K (2002) J Solid State Chem 165:381

    Article  CAS  Google Scholar 

  11. Bansal KP, Kumari S, Das BK, Jain GC (1983) J Mater Sci 18:2095–2100

    Article  CAS  Google Scholar 

  12. Palguev SF, Gilderman VK, Zemtzov VI (1990) High temperature oxide electronic conductors for the electrochemical devices. Nauka, Moscow, p 197

  13. Vashook V, Vasylechko L, Zosel J, Gruner W, Ullmann H, Guth U (2004) J Solid State Chem 177:3784

    Article  CAS  Google Scholar 

  14. Vashook V, Vasylechko L, Ullmann H, Guth U (2006) J Alloys Compd 354:13

    Article  CAS  Google Scholar 

  15. Sfeir J, Buffat Ph, Möckli P, Xanthopoulos N, Vasquez R, Mathieu H, van Herle J, Thampi K (2001) J Catal 202:229–244

    Article  CAS  Google Scholar 

  16. Sfeir J, van Herle J, McEvoy AJ (1998) In: Stevens P (ed) Proceedings of the 3rd European solid oxide fuel cell forum. Nantes, France, p 267

  17. Teske K, Ullmann H, Trofimenko N (1997) J Therm Anal 49:1211

    Article  CAS  Google Scholar 

  18. Bode M, Teske K, Ullmann H (1994) GIT Fachzeitschrift Lab 38:495

    CAS  Google Scholar 

  19. Vashook V, Al Daroukh M, Ullmann H (2000) Ionics 7:59

    Article  Google Scholar 

  20. Vashook V, Vasylechko L, Trofimenko N, Kuznecov M, Otchik P, Zosel J, Guth U (2006) J Alloys Compd 419:271–280

    Article  CAS  Google Scholar 

  21. Vashook V, Vasylechko L, Zosel J, Ullmann H, Guth U (2004) Crystal structure and electrical conductivity of lanthanum-calcium chromites–titanates \( {\text{La}}_{{1 - x}} {\text{Ca}}_{x} {\text{Cr}}_{{1 - y}} {\text{Ti}}_{y} {\text{O}}_{{3 - \delta }} {\left( {x = 0 \div 1,\;y = 0 \div 1} \right)} \). J Solid State Chem 177:3784–3794

    Article  CAS  Google Scholar 

  22. Borg RJ, Dienes GJ (1992) The physical chemistry of solids. Academic, San Diego, p 584

    Google Scholar 

  23. Tretyakov Yu D, Komarov VF, Kutsenok IB, Prosvirnina NA (1972) J Solid State Chem 5:157

    Article  Google Scholar 

  24. Vashook V, Zosel J, Preis W, Sitte W, Guth U (2004) Solid State Ion 175:441–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vashook.

Additional information

Dedicated to Prof. Dr. Werner Weppner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vashook, V., Müller, R., Zosel, J. et al. A-site deficient lanthanum-calcium chromite-titanates doped with 3d transition metals: synthesis, oxygen nonstoichiometry, electrical conductivity, and catalytic activity. Ionics 13, 141–149 (2007). https://doi.org/10.1007/s11581-007-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0083-1

Keywords

Navigation