Skip to main content
Log in

Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials

  • Review
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Brain fingerprinting (BF) detects concealed information stored in the brain by measuring brainwaves. A specific EEG event-related potential, a P300-MERMER, is elicited by stimuli that are significant in the present context. BF detects P300-MERMER responses to words/pictures relevant to a crime scene, terrorist training, bomb-making knowledge, etc. BF detects information by measuring cognitive information processing. BF does not detect lies, stress, or emotion. BF computes a determination of “information present” or “information absent” and a statistical confidence for each individual determination. Laboratory and field tests at the FBI, CIA, US Navy and elsewhere have resulted in 0% errors: no false positives and no false negatives. 100% of determinations made were correct. 3% of results have been “indeterminate.” BF has been applied in criminal cases and ruled admissible in court. Scientific standards for BF tests are discussed. Meeting the BF scientific standards is necessary for accuracy and validity. Alternative techniques that failed to meet the BF scientific standards produced low accuracy and susceptibility to countermeasures. BF is highly resistant to countermeasures. No one has beaten a BF test with countermeasures, despite a $100,000 reward for doing so. Principles of applying BF in the laboratory and the field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that an indeterminate outcome is neither a false positive nor a false negative error. Rather, it is a determination that there was insufficient data to draw a conclusion with a high statistical confidence in either direction. False negatives and false positives are errors that provide false evidence, to the detriment of the judicial process. An indeterminate provides no evidence, and has no legal impact.

  2. Accuracy is correctly reported as 100% minus the error rate. This allows the reader to compute the true error rate. Reports of “accuracy” that confound false positive and false negative errors with indeterminate outcomes have the effect of hiding the true error rate, and thus make comparison with correctly reported studies problematic.

  3. Note that in brain fingerprinting, both targets and irrelevants provide standards. Bootstrapping computes the probability that the probe responses are more similar to the target responses, or more similar to the irrelevant responses. This results in high statistical confidences for both information-present and information-absent determinations.

  4. For example, in Meixner and Rosenfeld (2010, p. 63, Table 2, subject 10), GNO condition was classified “innocent” when there was an 86% probability that the probe response was larger than the irrelevant response (i.e., 86% probability that “guilty” was the correct classification).

References

  • Abootalebi V, Moradi MH, Khalilzadeh MA (2006) A comparison of methods for ERP assessment in a P300-based GKT. Int J Psychophysiol 62(2):309–320

    Article  PubMed  Google Scholar 

  • Allen J (2008) Not devoid of forensic potential, but…. Am J Bioethics 8(1):27–28

    Article  Google Scholar 

  • Allen J, Iacono WG (1997) A comparison of methods for the analysis of event-related potentials in deception detection. Psychophysiology 34:234–240

    Article  PubMed  CAS  Google Scholar 

  • Allen JJ, Mertens R (2009) Limitations to the detection of deception: true and false recollections are poorly distinguished using an event-related potential procedure. Soc Neurosci 4(6):473–490

    Article  PubMed  Google Scholar 

  • Allen J, Iacono WG, Danielson KD (1992) The identification of concealed memories using the event-related potential and implicit behavioral measures: a methodology for prediction in the face of individual differences. Psychophysiology 29:504–522

    Article  PubMed  CAS  Google Scholar 

  • Başar-Eroglu C, Başar E, Demiralp T, Schürmann M (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol 13(2):161–179

    Article  PubMed  Google Scholar 

  • Bashore T, Rapp P (1993) Are there alternatives to traditional polygraph procedures? Psychol Bull 113:3–22

    Article  Google Scholar 

  • Baudena P, Halgren E, Heit G, Clarke JM (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94:251–264

    Article  PubMed  CAS  Google Scholar 

  • Daubert v. Merrell Dow Pharmaceuticals, Inc. 509 US 579, 594 (1993)

  • Donchin E, Ritter W, McCallum WC (1978) Cognitive psychophysiology: the endogenous components of the ERP. In: Callaway E, Teuting P, Koslow S (eds) Brain event-related potentials in man. Academic Press, New York, pp 349–441

    Google Scholar 

  • Donchin E, Miller GA, Farwell LA (1986) The endogenous components of the event-related potential—a diagnostic tool? In: Swaab DF, Fliers E, Mirmiran M, Van Gool WA, Van Haaren F (eds) Progress in brain research. Vol 70: Aging of the brain and Alzheimer’s disease. Elsevier, Amsterdam, pp 87–102

    Chapter  Google Scholar 

  • Erickson MJ (2007) Daubert’s bipolar treatment of scientific expert testimony—from Frye’s polygraph to Farwell’s brain fingerprinting. Drake Law Rev 55:763–812

    Google Scholar 

  • Fabiani M, Gratton G, Karis D, Donchin E (1987) The definition, identification and reliability of measurement of the P300 component of the event-related brain potential. In: Ackles PK, Jennings JR, Coles MGH (eds) Advances in psychophysiology, vol 2. JAI Press, Greenwich, pp 1–78

    Google Scholar 

  • Farwell LA (1992a) The brain-wave information detection (BID) system: a new paradigm for psychophysiological detection of information. Doctoral Dissertation, University of Illinois at Urbana-Champaign, pp 1–165

  • Farwell LA (1992b) Two new twists on the truth detector: brain-wave detection of occupational information. Psychophysiology 29(s4A):S3

    Google Scholar 

  • Farwell LA (1994) Method and apparatus for multifaceted electroencephalographic response analysis (MERA). US Patent #5,363,858

  • Farwell LA (1995a) Method and apparatus for truth detection. US Patent #5,406,956

  • Farwell LA (1995b) Method for electroencephalographic information detection. US Patent #5,467,777

  • Farwell, LA (1999) How consciousness commands matter: the new scientific revolution and the evidence that anything is possible. Sunstar. Fairfield, IA

  • Farwell LA (2007) Apparatus for a classification guilty knowledge test and integrated system for detection of deception and information. UK Patent #GB2421329

  • Farwell LA (2008) Brain fingerprinting detects real crimes in the field despite one-hundred-thousand-dollar reward for beating it. Psychophysiology 45(s1):S1

    Google Scholar 

  • Farwell LA (2009) Brain fingerprinting in global security. Presented at the Global Security Challenge Security Summit, Nov 2009. London Business School, London

  • Farwell LA (2010) Method and apparatus for brain fingerprinting, measurement, assessment and analysis of brain function. US Patent # 7,689,272

  • Farwell LA (2011a) Brain fingerprinting: corrections to Rosenfeld. Sci Rev Mental Health Practice 8(2):56–68. http://www.brainwavescience.com/Farwell_Brain_Fingerprinting_Corrections_to_Rosenfeld_Scientific_Review_of_Mental_Health_Practice.pdf

    Google Scholar 

  • Farwell LA (2011b) Brain fingerprinting: comprehensive corrections to Rosenfeld in scientific review of mental health practice. Excalibur Scientific Press, Seattle. http://www.brainwavescience.com/Scientific_Review_of_Mental_Health_Practice_Farwell_Corrections_to_Rosenfeld.pdf

  • Farwell LA (2012) Brain fingerprinting: a tutorial review of laboratory research and field applications. Evergreen Press, Seattle. Available at: http://www.brainwavescience.com/Farwell_Brain_Fingerprinting_Tutorial_Review

  • Farwell LA (2013) Lie detection. In: Saukko P (ed) Encyclopedia of forensic sciences, 2nd edn. Elsevier, Oxford

  • Farwell LA, Donchin E (1986) The “brain detector”: P300 in the detection of deception. Psychophysiology 23(4):434

    Google Scholar 

  • Farwell LA, Donchin E (1988a) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  PubMed  CAS  Google Scholar 

  • Farwell LA, Donchin E (1988b) Event-related brain potentials in interrogative polygraphy: analysis using bootstrapping. Psychophysiology 25(4):445

    Google Scholar 

  • Farwell LA, Donchin E (1991) The truth will out: interrogative polygraphy (‘‘lie detection’’) with event-related potentials. Psychophysiology 28(5):531–547. http://www.Brainwavescience.com/Farwell_Donchin_1991_Psychophysiology_Brain_Fingerprinting_The_Truth_Will_Out.pdf

    Google Scholar 

  • Farwell LA, Farwell GW (1995) Quantum-mechanical processes and consciousness. Bull Am Phys Soc 40(2):956–957

    Google Scholar 

  • Farwell LA, Makeig TH (2005) Farwell brain fingerprinting in the case of Harrington v. State. Open Court X [10]:3, 7-10 Indiana State Bar Assoc. Available at: http://www.brainwavescience.com/Farwell_Brain_Fingerprinting_in_Harrington_v_State

  • Farwell LA, Richardson DC (2006a) Brain fingerprinting in laboratory conditions. Psychophysiology 43(s1):S37–S38

    Google Scholar 

  • Farwell LA, Richardson DC (2006b) Brain fingerprinting in field conditions. Psychophysiology 43(s1):S38

    Google Scholar 

  • Farwell LA, Smith SS (2001) Using brain MERMER testing to detect concealed knowledge despite efforts to conceal. J Forensic Sci 46(1):135–143. Available at: http://www.Brainwavescience.com/Farwell_Smith_Journal_of_Forensic_Sciences_Brain_Fingerprinting.pdf

    Google Scholar 

  • Farwell LA, Martinerie JM, Bashore TR, Rapp PE, Goddard PH (1993) Optimal digital filters for long-latency components of the event-related brain potential. Psychophysiology 30(3):306–315

    Article  PubMed  CAS  Google Scholar 

  • Farwell LA, Richardson DC, Richardson G (2011) Brain fingerprinting field studies comparing P300-MERMER and P300 ERPs in the detection of concealed information. Psychophysiology 48: S95–S96 (abstract). Available at: http://www.brainwavescience.com/Farwell_Richardson_Richardson_2011_Brain_Fingerprinting_Field_Studies_Comparing_P300MERMER_and_P300_in_the_Detection_of_Concealed_Information.pdf

  • Farwell LA, Richardson DC, Richardson GM (in press) Brain fingerprinting field studies comparing P300-MERMER and P300 brainwave responses in the detection of concealed information. Evergreen Press, Seattle. http://www.brainwavescience.com/Farwell_Richardson_Richardson_Brain_Fingerprinting_Field_Studies_Comparing_P300-MERMER_and_P300_Brainwave_Responses_in_the_Detection_of_Concealed_Information

  • Gaillard AKW, Ritter W (1983) Tutorials in event-related potential research: endogenous components. North-Holland, Amsterdam

    Google Scholar 

  • Gamer M, Berti S (2009) Task relevance and recognition of concealed information have different influences on electrodermal activity and event-related brain potentials. Psychophysiology 47(2):355–364

    Article  PubMed  Google Scholar 

  • Grier JB (1971) Non-parametric indexes for sensitivity and bias: computing formulas. Psychol Bull 75:424–429

    Article  PubMed  CAS  Google Scholar 

  • Güntekin B, Başar E (2010) A new interpretation of P300 responses upon analysis of coherences. Cogn Neurodyn 4(2):107–118

    Article  PubMed  Google Scholar 

  • Hahm J, Ji HK, Jeong JY, Oh DH, Kim SH, Sim KB, Lee JH (2009) Detection of concealed information: combining a virtual mock crime with a P300-based Guilty Knowledge Test. Cyberpsychol Behav 12(3):269–275

    Article  PubMed  Google Scholar 

  • Halgren E, Stapleton JM, Smith ME, Altafullah I (1986) Generators of the human scalp P3(s). In: Cracco RQ, Bodis-Wollner I (eds) Evoked potentials, frontiers of clinical neuroscience, vol 3. Alan R. Liss, New York

    Google Scholar 

  • Halgren E, Baudena P, Clarke JM, Heit G, Liegois C, Chauvel P et al (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94:191–220

    Article  PubMed  CAS  Google Scholar 

  • Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164

    Article  PubMed  CAS  Google Scholar 

  • Harrington v. State. Case No. PCCV 073247(Iowa District Court for Pottawattamie County, 5 March 2001)

  • Harrington v. State. 659 N.W.2d 509 (Iowa 2003)

  • Heisenberg W (1958) Physics and philosophy, the revolution in modern science. Harper, New York

    Google Scholar 

  • Hira S, Furumitsu I (2002) Polygraphic examinations in Japan: applications of the guilty knowledge test in forensic investigations. Int J Police Sci Manag 4:16–27

    Google Scholar 

  • Huster RJ, Pantev C, Konrad C, Westerhausen R (2010) The role of the cingulate cortex as neural generator of the N200 and P300 in a tactile response inhibition task. Hum Brain Mapp 31(8):1260–1271

    PubMed  CAS  Google Scholar 

  • Iacono WG (2007) Detection of deception. In: Cacioppo J, Tassinary L, Berntson G (eds) Handbook of psychophysiology. Cambridge University Press, New York, pp 688–703

    Google Scholar 

  • Iacono WG (2008) The forensic application of “Brain Fingerprinting”: why scientists should encourage the use of P300 memory detection methods. Am J Bioethics 8(1):30–32

    Article  Google Scholar 

  • Iacono WG, Lykken DT (1997) The validity of the lie detector: two surveys of scientific opinion. J Appl Psychol 82:426–433

    Article  Google Scholar 

  • Iacono WG, Patrick CJ (2006) Polygraph (“lie detector”) testing: current status and emerging trends. In: Weiner IB, Hess AK (eds) The handbook of forensic psychology. Wiley, New York, pp 552–588

    Google Scholar 

  • Johnson R (1988) The amplitude of the P300 component of the event-related potential: review and synthesis. In: Ackles P, Jennings JR, Coles MGH (eds) Advances in psychophysiology: a research annual, vol 3. JAI Press, Greenwich, pp 69–137

    Google Scholar 

  • Johnson RJ (1989) Auditory and visual P300s in temporal lobectomy patients: evidence for modality-dependent generators. Psychophysiology 26(6):633–650

    Article  PubMed  Google Scholar 

  • Johnson RJ (1993) On the neural generators of the P300 component of the event-related potential. Psychophysiology 30(1):90–97

    Article  PubMed  Google Scholar 

  • Johnson MM, Rosenfeld JP (1992) Oddball-evoked P300-based method of deception detection in the laboratory II: utilization of non-selective activation of relevant knowledge. Int J Psychophysiol 12(3):289–306

    Article  PubMed  CAS  Google Scholar 

  • Kiss I, Dashieff RM, Lordeon P (1989) A parieto-occipital generator for P300: evidence from human intracranial recordings. Int J Neurosci 49:1–2

    Article  Google Scholar 

  • Kubo K, Nittono H (2009) The role of intention to conceal in the P300-based concealed information test. Appl Psychophysiol Biofeedback 34(3):227–235

    Article  PubMed  Google Scholar 

  • Leaf v. Goodyear Tire & Rubber Co., 590 N.W.2d 525, 533 (Iowa 1999)

  • Lefebvre CD, Marchand Y, Smith SM, Connolly JF (2007) Determining eyewitness identification accuracy using event-related brain potentials (ERPs). Psychophysiology 44(6):894–904

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre CD, Marchand Y, Smith SM, Connolly JF (2009) Use of event-related brain potentials (ERPs) to assess eyewitness accuracy and deception. Int J Psychophysiol 73(3):218–225

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hu Y, Liu T, Wu D (2011) Dipole source analysis of auditory P300 response in depressive and anxiety disorders. Cogn Neurodyn 5(2):221–229

    Article  PubMed  Google Scholar 

  • Linden D (2005) The P300: where in the brain is it produced and what does it tell us? Neuroscientist 11(6):563–576

    Article  PubMed  CAS  Google Scholar 

  • Long J, Gu Z, Li Y, Yu T, Li F, Fu M (2011) Semi-supervised joint spatio-temporal feature selection for P300-based BCI speller. Cogn Neurodyn 5(4):387–398

    Article  Google Scholar 

  • Lui M, Rosenfeld JP (2008) Detection of deception about multiple, concealed, mock crime items, based on a spatial-temporal analysis of ERP amplitude and scalp distribution. Psychophysiology 45(5):721–730

    Article  PubMed  Google Scholar 

  • Lykken DT (1959) The GSR in the detection of guilt. J Appl Psychol 43:385–388

    Article  Google Scholar 

  • Lykken DT (1960) The validity of the guilty knowledge technique: the effects of faking. J Appl Psychol 44:258–262

    Article  Google Scholar 

  • Meegan DV (2008) Neuroimaging techniques for memory detection: scientific, ethical and legal issues. Am J Bioethics 8:9–20

    Article  Google Scholar 

  • Meijer EH, Smulders FTY, Merckelbach HLGJ, Wolf AG (2007) The P300 is sensitive to face recognition. Int J Psychophysiol 66(3):231–237

    Article  PubMed  Google Scholar 

  • Meijer EH, Smulders FTY, Wolf A (2009) The contribution of mere recognition to the P300 effect in a concealed information test. Appl Psychophysiol Biofeedback 34(3):221–226

    Article  PubMed  Google Scholar 

  • Meixner JB, Rosenfeld PJ (2010) Countermeasure mechanisms in a P300-based concealed information test. Psychophysiology 47(1):57–65

    Article  PubMed  Google Scholar 

  • Meixner JB, Rosenfeld PJ (in press) A mock terrorism application of the P300-based concealed information test. Psychophysiology

  • Meixner JB, Haynes A, Winograd MR, Brown J, Rosenfeld PJ (2009) Assigned versus random, countermeasure-like responses in the p300 based complex trial protocol for detection of deception: task demand effects. Appl Psychophysiol Biofeedback 34(3):209–220

    Article  PubMed  Google Scholar 

  • Mertens R, Allen JJB (2008) The role of psychophysiology in forensic assessments: deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology 45(2):286–298

    Article  PubMed  Google Scholar 

  • Mertens R, Allen J, Culp N, Crawford L (2003) The detection of deception using event-related potentials in a highly realistic mock crime scenario. Psychophysiology 40:S60

    Article  Google Scholar 

  • Miller GA, Bashore TR, Farwell LA, Donchin E (1987) Research in geriatric psychophysiology. In: Schaie KW, Eisdorfer C (eds) Annual review of gerontology and geriatrics, vol 7. Springer, New York, pp 1–27

  • Miyake Y, Mizutanti M, Yamahura T (1993) Event related potentials as an indicator of detecting information in field polygraph examinations. Polygraph 22:131–149

    Google Scholar 

  • Moenssens AA (2002) Brain fingerprinting—can it be used to detect the innocence of persons charged with a crime? UMKC Law Rev 70:891–920

    Google Scholar 

  • Murphy PR, Robertson IH, Balsters JH, O’Connell RG (2011) Pupillometry and P3 index the locus coeruleus—noradrenergic arousal function in humans. Psychophysiology 48:1531–1542

    Article  Google Scholar 

  • National Research Council (2003) The polygraph and lie detection. National Academies Press, Washington

    Google Scholar 

  • Neshige R, Kuroda Y, Kakigi R, Fujiyama F, Matoba R, Yarita M, Luders H, Shibasaki H (1991) Event-related brain potentials as indicators of visual recognition and detection of criminals by their use. Forensic Sci Int 51(1):95–103

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus—norepinephrine system. Psychol Bull 131(4):510–532

    Article  PubMed  Google Scholar 

  • Picton TW (1988) Handbook of electroencephalography and clinical neurophysiology: human event-related potentials, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Pineda JA, Foote SL, Neville HJ (1989) Effects of locus coeruleus lesions on auditory, long-latency, event-related potentials in monkey. J Neurosci 9:81–93

    PubMed  CAS  Google Scholar 

  • Rapp PE, Albano AM, Schmah TI, Farwell LA (1993) Filtered noise can mimic low dimensional chaotic attractors. Phys Rev E 47(4):2289–2297

    Article  Google Scholar 

  • Roberts AJ (2007) Everything new is old again: brain fingerprinting and evidentiary analogy. Yale JL Tech 9:234–270. Available at: http://www.yjolt.org/files/roberts-9-YJOLT-234.pdf

  • Rosenfeld JP (1995) Alternative views of Bashore and Rapp’s (1993) alternatives to traditional polygraphy: a critique. Psychol Bull 117(1):159–166

    Article  Google Scholar 

  • Rosenfeld JP (2002) Event-related potentials in the detection of deception, malingering, and false memories. In: Kleiner M (ed) Handbook of polygraph testing. Academic Press, New York, pp 265–286

    Google Scholar 

  • Rosenfeld JP (2005) ‘‘Brain fingerprinting:’’ a critical analysis. Sci Rev Mental Health Practice 4:20–37

    Google Scholar 

  • Rosenfeld JP, Labkovsky E (in press) New P300-based protocol to detect concealed information: Resistance to mental countermeasures against only half the irrelevant stimuli and a possible ERP indicator of countermeasures. Psychophysiology

  • Rosenfeld JP, Nasman VT, Whalen R, Cantwell B, Mazzeri L (1987) Late vertex positivity in event-related potentials as a guilty knowledge indicator: a new method of lie detection. Int J Neurosci 34:125–129

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JP, Cantwell G, Nasman VT, Wojdac V, Ivanov S, Mazzeri L (1988) A modified, event-related potential-based guilty knowledge test. Int J Neurosci 42:157–161

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JP, Angell A, Johnson M, Qian J (1991) An ERP-based, control-question lie detector analog: algorithms for discriminating effects within individuals’ average waveforms. Psychophysiology 28:319–335

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JP, Soskins M, Bosh G, Ryan A (2004) Simple effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology 41(2):205–219

    Article  PubMed  Google Scholar 

  • Rosenfeld JP, Biroschak JR, Furedy JJ (2006) P-300-based detection of concealed autobiographical versus incidentally acquired information target and non-target paradigms. Int J Psychophysiol 60(3):251–259

    Article  PubMed  Google Scholar 

  • Rosenfeld JP, Shue E, Singer E (2007) Single versus multiple probe blocks of P300-based concealed information tests for autobiographical versus incidentally learned information. Biol Psychol 74:396–404

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JP, Labkovsky E, Lui MA, Winograd M, Vandenboom C, Chedid K (2008) The complex trial protocol (CTP): a new, countermeasure-resistant, accurate P300-based method for detection of concealed information. Psychophysiology 45:906–919

    Article  PubMed  Google Scholar 

  • Rosenfeld JP, Tang M, Meixner JB, Winograd M, Labkovsky E (2009) The effects of asymmetric vs. symmetric probability of targets following probe and irrelevant stimuli in the complex trial protocol for detection of concealed information with P300. Physiol Behav 98(1–2):10–16

    Article  PubMed  CAS  Google Scholar 

  • Sabeti M, Moradi E, Katebi S (2011) Analysis of neural sources of p300 event-related potential in normal and schizophrenic participants. Adv Exp Med Biol 696:589–597

    Article  PubMed  Google Scholar 

  • Sasaki M, Hira H, Matsuda T (2002) Effects of a mental countermeasure on the physiological detection of deception using P3. Stud Humanit Sci 42:73–84

    Google Scholar 

  • Slaughter v. State, No. PCD-2004-277 (Okla. Ct. of Crim. App., 16 Apr 2004)

  • Smith ME, Halgren E, Sokolik M, Baudena P, Musolino A, Liegois-Chauvel C et al (1990) The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogr Clin Neurophysiol 76:235–248

    Article  PubMed  CAS  Google Scholar 

  • Sochurková D, Brázdil M, Jurák P, Rektor I (2006) P3 and ERD/ERS in a visual oddball paradigm: a depth EEG study from the mesial temporal structures. J Psychophysiol 20(1):32–39

    Article  Google Scholar 

  • Soskins M, Rosenfeld JP, Niendam T (2001) The case for peak to peak measurement of P300 recorded at 3 Hz high pass filter settings in detection of deception. Int J Psychophysiol 40:173–180

    Article  PubMed  CAS  Google Scholar 

  • Spencer KM, Dien J, Donchin E (2001) Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology 38:343–358

    Article  PubMed  CAS  Google Scholar 

  • Stapleton JM, Halgren E (1987) Endogenous potentials evoked in simple cognitive tasks: depth components and task correlates. Electroencephalogr Clin Neurophysiol 67:44–52

    Article  PubMed  CAS  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked potential correlates of stimulus uncertainty. Science 150:1187–1188

    Article  PubMed  CAS  Google Scholar 

  • Verschuere B, Rosenfeld JP, Winograd M, Labkovksy E, Wiersema JR (2009) The role of deception in P300 memory detection. Legal Criminol Psychol 14(2):253–262

    Article  Google Scholar 

  • Verschuere B, Ben-Shakhar G, Meijer E (2011) Memory detection: theory and application of the concealed information test, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Vrij A (2008) Detecting lies and deceit: pitfalls and opportunities, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Wang C, Ulbert I, Schomer DL, Marinkovic K, Halgren E (2005) Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J Neurosci 25:604–613

    Article  PubMed  Google Scholar 

  • Wasserman S, Bockenholt U (1989) Bootstrapping: applications to psychophysiology. Psychophysiology 26:208–221

    Article  PubMed  CAS  Google Scholar 

  • Winograd MR, Rosenfeld P (in press) Mock crime application of the Complex Trial Protocol (CTP) P300-based concealed information test. Psychophysiology

Download references

Acknowledgments

The author is grateful to former FBI scientists Drew Richardson, PhD and Sharon Smith, PhD for their substantial contributions to some of the research reviewed herein; to attorneys Thomas Makeig, Mary Kennedy, and Thomas Frerichs for their legal expertise in obtaining admissibility in court for brain fingerprinting; to the US Central Intelligence Agency (CIA) for funding several of the studies reviewed herein; and to the US Federal Bureau of Investigation (FBI) and the US Navy for their cooperation and assistance in conducting research with their personnel in their facilities. The views expressed herein are the views of the author, and do not necessarily reflect the views of any other individual or agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence A. Farwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farwell, L.A. Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials. Cogn Neurodyn 6, 115–154 (2012). https://doi.org/10.1007/s11571-012-9192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9192-2

Keywords

Navigation