Skip to main content
Log in

EAST-Syndrom

Ein neues Krankheitsbild mit renalem Salzverlust

EAST syndrome

A new disease with renal salt wasting

  • Pädiatrische Nephrologie
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Die Erforschung seltener Erkrankungen ermöglicht häufig entscheidende Erkenntnisse über die Pathophysiologie des Menschen. Kürzlich haben wir ein neues Krankheitsbild bei Kindern beschrieben, welches mit einem dem Gitelman-Syndrom ähnlichen renalen Salzverlust einhergeht. Ursprünglich wurden die Kinder im Säuglingsalter mit Krampfanfällen auffällig, und später wurden bei Untersuchungen bezüglich einer Entwicklungsverzögerung auch noch Ataxie und Innenohrschwerhörigkeit festgestellt. Diese Kombination von Symptomen war bisher nicht beschrieben worden, und entsprechend benannten wir dieses neu entdeckte Syndrom mit dem Akronym EAST (Epilepsie, Ataxie, Schwerhörigkeit und Tubulopathie). Genetische Untersuchungen an einer konsanguinen Familie mit 4 betroffenen Kindern identifizierten rezessive Mutationen im Kaliumkanal KCNJ10 als Ursache der Erkrankung. Dies unterstreicht die physiologische Relevanz dieses Kanals für Gehirn, Innenohr und Niere. KCNJ10 ist dementsprechend ein potenzieller Angriffspunkt für neue Medikamente, z. B. zur Behandlung von Bluthochdruck oder von Epilepsie.

Abstract

The investigation of rare diseases often reveals important insights into human pathophysiology. Recently, we described a new syndrome in children with renal salt wasting mimicking Gitelman syndrome. The children initially presented in infancy with seizures and investigations into developmental delay later revealed ataxia and sensorineural deafness. This constellation of symptoms was not previously recognized and accordingly we assigned this newly discovered syndrome the acronym EAST (Epilepsy, Ataxia, Sensorineural deafness and Tubulopathy). Investigations in an informative consanguineous family with four affected children revealed the underlying genetic basis as recessive mutations in the potassium channel KCNJ10. This highlights the importance of KCNJ10 in brain and renal physiology and makes it a potential target for new therapies, e.g. for the treatment of hypertension or epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bandulik S, Schmidt K, Böckenhauer D et al (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 461:423–435

    Article  PubMed  CAS  Google Scholar 

  2. Bendz H, Aurell M (1999) Drug-induced diabetes insipidus: incidence, prevention and management. Drug Saf 21:449–456

    Article  PubMed  CAS  Google Scholar 

  3. Bleich M (2009) Membrane physiology – bridging the gap between medical disciplines. N Engl J Med 360:2012–2014

    Article  PubMed  CAS  Google Scholar 

  4. Böckenhauer D, Aitkenhead H (2011) The kidney speaks: interpreting urinary electrolytes. Arch Dis Child [in press]

  5. Böckenhauer D, Feather S, Stanescu HC et al (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    Article  PubMed  Google Scholar 

  6. Böckenhauer D, Medlar AJ, Ashton E et al (2011) Genetic testing in renal disease. Pediatr Nephrol [Epub ahead of print]

  7. Buono RJ, Lohoff FW, Sander T et al (2004) Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 58:175–183

    Article  PubMed  CAS  Google Scholar 

  8. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997

    Article  Google Scholar 

  9. Freudenthal B, Kulaveerasingam D, Lingappa L et al (2011) KCNJ10 mutations disrupt function in patients with EAST syndrome. Nephron Physiol 119(3):p40–p48

    Article  PubMed  CAS  Google Scholar 

  10. Heuser K, Nagelhus EA, Tauboll E et al (2010) Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 88:55–64

    Article  PubMed  CAS  Google Scholar 

  11. Huen SC, Goldfarb DS (2007) Adverse metabolic side effects of thiazides: implications for patients with calcium nephrolithiasis. J Urol 177:1238–1243

    Article  PubMed  CAS  Google Scholar 

  12. Kleta R, Böckenhauer D (2006) Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol 104:73–80

    Article  Google Scholar 

  13. Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  PubMed  CAS  Google Scholar 

  14. Kofuji P, Ceelen P, Zahs KR et al (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740

    PubMed  CAS  Google Scholar 

  15. Lenzen KP, Heils A, Lorenz S et al (2005) Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res 63:113–118

    Article  PubMed  CAS  Google Scholar 

  16. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  PubMed  CAS  Google Scholar 

  17. Lucarini N, Verrotti A, Napolioni V et al (2007) Genetic polymorphisms and idiopathic generalized epilepsies. Pediatr Neurol 37:157–164

    Article  PubMed  Google Scholar 

  18. Marcus DC, Wu T, Wangemann P et al (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407

    PubMed  CAS  Google Scholar 

  19. Neusch C, Papadopoulos N, Müller M et al (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95:1843–1852

    Article  PubMed  CAS  Google Scholar 

  20. Neusch C, Rozengurt N, Jacobs RE et al (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438

    PubMed  CAS  Google Scholar 

  21. Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601

    Article  PubMed  CAS  Google Scholar 

  22. Pak CY (2004) Medical management of urinary stone disease. Nephron Clin Pract 98:c49–c53

    Article  PubMed  Google Scholar 

  23. Reichold M, Zdebik AA, Lieberer E et al (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA 107:14490–14495

    Article  PubMed  CAS  Google Scholar 

  24. Rozengurt N, Lopez I, Chiu CS et al (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177:71–80

    Article  PubMed  CAS  Google Scholar 

  25. Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN et al (2010) Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 285:36040–36048

    Article  PubMed  CAS  Google Scholar 

  26. Scholl UI, Choi M, Liu T et al (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 106:5842–5847

    Article  PubMed  CAS  Google Scholar 

  27. Simon DB, Nelson-Williams C, Bia MJ et al (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30

    Article  PubMed  CAS  Google Scholar 

  28. Tang X, Hang D, Sand A et al (2010) Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem Biophys Res Commun 399:537–541

    Article  PubMed  CAS  Google Scholar 

  29. Thompson DA, Feather S, Stanescu HC et al (2011) Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. J Physiol 589:1681–1689

    Article  PubMed  CAS  Google Scholar 

  30. West WJ (1841) On a peculiar form of infantile convulsions. Lancet 1:724–725

    Article  Google Scholar 

  31. Williams DM, Lopes CM, Rosenhouse-Dantsker A et al (2010) Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J Am Soc Nephrol 21:2117–2129

    Article  PubMed  CAS  Google Scholar 

  32. Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Böckenhauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böckenhauer, D., Stanescu, H., Bandulik, S. et al. EAST-Syndrom. Nephrologe 6, 529–536 (2011). https://doi.org/10.1007/s11560-011-0560-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-011-0560-4

Schlüsselwörter

Keywords

Navigation