Skip to main content
Log in

Time Delay Implies Cost on Task Switching: A Model to Investigate the Efficiency of Task Partitioning

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Task allocation, and task switching have an important effect on the efficiency of distributed, locally controlled systems such as social insect colonies. Both efficiency and workload distribution are global features of the system which are not directly accessible to workers and can only be sampled locally by an individual in a distributed system. To investigate how the cost of task switching affects global performance we use social wasp societies as a metaphor to construct a simple model system with four interconnected tasks. Our goal is not the accurate description of the behavior of a given species, but to seek general conclusions on the effect of noise and time delay on a behavior that is partitioned into subtasks. In our model a nest structure needs to be constructed by the cooperation of individuals that carry out different tasks: builders, pulp and water foragers, and individuals storing water. We report a simulation study based on a model using delay-differential equations to analyze the trade-off between task switching costs and keeping a high degree of adaptivity in a dynamic, noisy environment. Combining the methods of time-delayed equations and stochastic processes we are able to represent the influence of swarm size and task switching sensitivity. We find that the system is stable for reasonable choices of parameters but shows oscillations for extreme choices of parameters and we find that the system is resilient to perturbations. We identify a trade-off between reaching equilibria of high performance and having short transients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, C., Boomsma, J. J., & Bartholdi, J. J. (2002). Task partitioning in insect societies: bucket brigades. Insectes Soc., 49, 171–180.

    Article  Google Scholar 

  • Anderson, C., & Ratnieks, F. L. W. (1999a). Task partitioning in foraging: general principles, efficiency and information reliability of queueing delays. In C. Detrain, J.-L. Deneubourg, & J. M. Pasteels (Eds.), Information processing in social insects (pp. 31–50). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Anderson, C., & Ratnieks, F. L. W. (1999b). Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am. Nat., 154, 521–535.

    Article  Google Scholar 

  • Anderson, C., & Ratnieks, F. L. W. (2000). Task partitioning in insect societies: novel situations. Insectes Soc., 47(2), 198–199.

    Article  Google Scholar 

  • Bannister, J. A., & Trivedi, K. S. (1983). Task allocation in fault-tolerant distributed systems. Acta Inform., 20, 261–281.

    Article  MathSciNet  MATH  Google Scholar 

  • de Weerdt, M., Zhang, Y., & Klos, T. (2007). Distributed task allocation in social networks. In Proceedings of the 6th international joint conference on autonomous agents and multiagent systems, New York: ACM.

    Google Scholar 

  • Deneubourg, J.-L., & Goss, S. (1989). Collective patterns and decision-making. Ethol. Ecol. Evol., 1(4), 295–311.

    Article  Google Scholar 

  • Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res., 23(9), 939–954.

    Article  Google Scholar 

  • Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 121–124.

    Article  Google Scholar 

  • Hamann, H., Meyer, B., Schmickl, T., & Crailsheim, K. (2010). A model of symmetry breaking in collective decision-making. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), Lecture notes in artificial intelligence: Vol. 6226. From animals to animats 11 (pp. 639–648). Berlin: Springer.

    Chapter  Google Scholar 

  • Hamann, H., Schmickl, T., Wörn, H., & Crailsheim, K. (2012). Analysis of emergent symmetry breaking in collective decision making. Neural Comput. Appl., 21(2), 207–218.

    Article  Google Scholar 

  • Hirsh, A. E., & Gordon, D. M. (2001). Distributed problem solving in social insects. Ann. Math. Artif. Intell., 31(1–4), 199–221.

    Article  Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (2008). The superorganism: the beauty, elegance, and strangeness of insect societies. New York: Norton.

    Google Scholar 

  • Jeanne, R. L. (1986). The organization of work in polybia occidentalis: costs and benefits of specialization in a social wasp. Behav. Ecol. Sociobiol., 19, 333–341.

    Article  Google Scholar 

  • Jeanne, R. L. (1996). Regulation of nest construction behaviour in polybia occidentalis. Anim. Behav., 52, 473–488.

    Article  Google Scholar 

  • Karsai, I., & Balazsi, G. (2002). Organization of work via a natural substance: Regulation of nest construction in social wasps. J. Theor. Biol., 218(4), 549–565.

    MathSciNet  Google Scholar 

  • Karsai, I., & Runciman, A. (2009). The effectiveness of the “common stomach” in the regulation of behavior of the swarm. In I. Troch & F. Breitenecker (Eds.), 6th Vienna international conference on mathematical modelling, MATHMOD 2009 (pp. 851–857). Vienna: ARGESIM Publishing House.

    Google Scholar 

  • Karsai, I., & Schmickl, T. (2011). Regulation of task partitioning by a “common stomach”: a model of nest construction in social wasps. Behav. Ecol., 22, 819–830.

    Article  Google Scholar 

  • Karsai, I., & Wenzel, J. W. (1998). Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proc. Natl. Acad. Sci. USA, 95, 8665–8669.

    Article  Google Scholar 

  • Karsai, I., & Wenzel, J. W. (2000). Organization and regulation of nest construction behavior in metapolybia wasps. J. Insect Behav., 13, 111–140.

    Article  Google Scholar 

  • Klügl, F., Triebig, C., & Dornhaus, A. (2003). Studying task allocation mechanisms of social insects for engineering multi-agent systems. In 2nd international workshop on the mathematics and algorithms of social Insects, Atlanta, GA, USA.

    Google Scholar 

  • Kuang, Y. (1993). Delay differential equations: with applications in population dynamics. Boston: Academic Press.

    MATH  Google Scholar 

  • Lemaire, T., Alami, R., & Lacroix, S. (2004). A distributed tasks allocation scheme in multi-UAV context. In Proc. of the IEEE international conference on robotics and automation (ICRA’04) (Vol. 4, pp. 3622–3627). New York: IEEE Press.

    Google Scholar 

  • Lerman, K., Jones, C., Galstyan, A., & Matarić, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. Int. J. Robot. Res., 25(3), 225–241.

    Article  Google Scholar 

  • Longtin, A., Milton, J. G., Bos, J. E., & Mackey, M. C. (1990). Noise and critical behavior of the pupil light reflex at oscillation onset. Phys. Rev. A, 41, 6992–7005.

    Article  Google Scholar 

  • Nair, R., Ito, T., Tambe, M., & Marsella, S. (2002). Task allocation in the RoboCup rescue simulation domain: a short note. In A. Birk, S. Coradeschi, & S. Tadokoro (Eds.), RoboCup 2001: robot soccer world cup V (Vol. 2377, pp. 1–22). Berlin: Springer.

    Chapter  Google Scholar 

  • Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Soc., 46(2), 95–108.

    Article  Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2004). Costs of environmental fluctuations an benefits of dynamic foraging decisions in honey bees. Adapt. Behav., 12, 263–277.

    Article  Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2008). Taskselsim: a model of the self-organization of the division of labour in honeybees. Math. Comput. Model. Dyn. Syst., 14, 101–125.

    Article  MATH  Google Scholar 

  • Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol., 11, 287–293.

    Article  Google Scholar 

  • Seeley, T. D. (1985). The information-center strategy of honeybee foraging. Fortschr. Zool., 31, 75–90.

    Google Scholar 

  • Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behav. Ecol. Sociobiol., 28(4), 277–290.

    Article  Google Scholar 

  • Sinha, N., Brown, J. T. G., & Carpenter, R. H. S. (2006). Task switching as a two-stage decision process. J. Neurophysiol., 95, 3146–3153.

    Article  Google Scholar 

  • Thenius, R., Schmickl, T., & Crailsheim, K. (2008). Optimisation of a honeybee-colony’s energetics via social learning based on queuing delays. Connect. Sci., 20(2), 193–210.

    Article  Google Scholar 

  • Wenzel, J. W., & Pickering, J. P. (1991). Cooperative foraging, productivity, and the central limit theorem. Proc. Natl. Acad. Sci. USA, 88, 36–38.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for precise comments that helped to improve the manuscript significantly. Authors T. Schmickl and H. Hamann were supported by the following grants: EU-IST-FET project ‘SYMBRION’, no. 216342; EU-ICT project ‘REPLICATOR’, no. 216240. T. Schmickl was also supported by the following grants: EU-ICT ‘CoCoRo’, no. 270382; EU-ICT ‘ASSISIbf’, no. 601074; Austrian Science Fund (FWF) research grant P23943-N13 (REBODIMENT). The authors thank Wayne G. Basler for establishing the Chair of Excellence for the Integration of the Arts, Rhetoric and Science and East Tennessee State University for supporting T. Schmickl as Basler Chair and I. Karsai as Basler Host 2012. I. Karsai was supported by 12-005M RDC and E82141 grants from ETSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hamann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, H., Karsai, I. & Schmickl, T. Time Delay Implies Cost on Task Switching: A Model to Investigate the Efficiency of Task Partitioning. Bull Math Biol 75, 1181–1206 (2013). https://doi.org/10.1007/s11538-013-9851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9851-4

Keywords

Navigation