Skip to main content
Log in

How Flow Speed Alters Competitive Outcome in Advective Environments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many species live in advective environments, such as rivers or streams. The community composition in such environments is shaped by the interplay between biotic interactions and hydrologic constraints. Lutscher et al. (Theor. Popul. Biol. 71:267–277, 2007) demonstrated by simulation that advective flow can shift competitive outcome from one species dominating to coexistence or even to the other species dominating. Here, we present a detailed analysis of the Lotka–Volterra advection-diffusion model underlying their simulations. We use variational techniques as well as a spatially implicit approximation to determine all possible advection-induced shifts in competitive outcome. We show that changes in advection follow relatively few and predictable paths. We illustrate our results in various bifurcation diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bailey, J., & Ollis, D. (1986). Biochemical engineering fundamentals. New York: McGraw-Hill.

    Google Scholar 

  • Ballyk, M., & Smith, H. (1998). A flow reactor with wall growth. In M. A. Horn (Ed.), Mathematical models in medical and health science (pp. 17–28). Nashville: Vanderbilt University Press.

    Google Scholar 

  • Ballyk, M., & Smith, H. (1999). A model of microbial growth in a plug flow reactor with wall attachment. Math. Biosci., 158, 95–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Ballyk, M., Dung, L., Jones, D. A., & Smith, H. (1998). Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math., 59(2), 573–596.

    Article  MathSciNet  Google Scholar 

  • Berestycki, H., Diekmann, O., Nagelkerke, C., & Zegeling, P. (2009). Can a species keep pace with a shifting climate? Bull. Math. Biol., 71(2), 399–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Boldin, B. (2007). Persistence and spread of gastro-intestinal infections: the case of enterotoxigenic escherichia coli in piglets. Bull. Math. Biol., 70(7), 2077–2101.

    Article  MathSciNet  Google Scholar 

  • Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction-diffusion equations. Mathematical and computational biology. New York: Wiley.

    MATH  Google Scholar 

  • Cruywagen, G., Kareiva, P., Lewis, M., & Murray, J. (1996). Competition in a spatially heterogeneous environment: modelling the risk of spread of a genetically engineered population. Theor. Popul. Biol., 49(1), 1–38.

    Article  MATH  Google Scholar 

  • Grover, J., Sze-Bi, H., & Feng-Bin, W. (2009). Competition and coexistence in flowing habitats with a hydraulic storage zone. Math. Biosci., 222, 42–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Hershey, A., Pastor, J., Peterson, B., & Kling, G. (1993). Stable isotopes resolve the drift paradox for baetis mayflies in an arctic river. Ecology, 74, 2315–2325.

    Article  Google Scholar 

  • Huisman, J., Arrayás, M., Ebert, U., & Sommeijer, B. (2002). How do sinking phytoplankton species manage to persist. Am. Nat., 159, 245–254.

    Article  Google Scholar 

  • Jin, Y., & Lewis, M. (2011). Seasonal influence on population spread and persistence in streams: critical domain size. SIAM J. Appl. Math., 71, 1241–1262.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Lewis, M. A. (2004). Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. J. Math. Biol., 48, 293–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., & Seo, G. (2011). The effect of temporal variability on persistence conditions in rivers. J. Theor. Biol., 283, 53–59.

    Article  Google Scholar 

  • Lutscher, F., Pachepsky, E., & Lewis, M. (2005). The effect of dispersal patterns on stream populations. SIAM Rev., 47(4), 749–772.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., Lewis, M., & McCauley, E. (2006). The effects of heterogeneity on population persistence and invasion in rivers. Bull. Math. Biol., 68(8), 2129–2160.

    Article  MathSciNet  Google Scholar 

  • Lutscher, F., McCauley, E., & Lewis, M. (2007). Spatial patterns and coexistence mechanisms in rivers. Theor. Popul. Biol., 71(3), 267–277.

    Article  MATH  Google Scholar 

  • Lutscher, F., Nisbet, R., & Pachepsky, E. (2010). Population persistence in the face of advection. Theor. Ecol., 3, 271–284.

    Article  Google Scholar 

  • Müller, K. (1954). Investigations on the organic drift in North Swedish streams (Technical Report 34). Institute of Freshwater Research, Drottningholm.

  • Pachepsky, E., Lutscher, F., Nisbet, R., & Lewis, M. A. (2005). Persistence, spread and the drift paradox. Theor. Popul. Biol., 67, 61–73.

    Article  MATH  Google Scholar 

  • Potapov, A., & Lewis, M. (2004). Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol., 66(5), 975–1008.

    Article  MathSciNet  Google Scholar 

  • Samia, Y., & Lutscher, F. (2010). Coexistence and spread of competitors in heterogeneous landscapes. Bull. Math. Biol., 72, 2089–2112.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt, J. (2005). An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol., 51, 183–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam, J. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    MathSciNet  MATH  Google Scholar 

  • Speirs, D., & Gurney, W. (2001). Population persistence in rivers and estuaries. Ecology, 82(5), 1219–1237.

    Article  Google Scholar 

  • Strohm, S., & Tyson, R. (2011). The effect of habitat fragmentation on cyclic population dynamics: a reduction to ordinary differential equations. Theor. Ecol.

  • Van Kirk, R. W., & Lewis, M. A. (1997). Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol., 59(1), 107–137.

    Article  MATH  Google Scholar 

  • Vasilyeva, O. (2011). Modeling and analysis of population dynamics in advective environments. Ph.D. thesis, University of Ottawa.

  • Vasilyeva, O., & Lutscher, F. (2010). Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q., 18(4), 439–469.

    MathSciNet  MATH  Google Scholar 

  • Vasilyeva, O., & Lutscher, F. (2012). Competition of three species in an advective environment. Nonlinear Anal., Real World Appl., 13(4), 1730–1748.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful for insightful discussions with Mark Lewis, Alex Potapov, Roger Nisbet, and Ed McCauley. This work was supported by an Early Researcher Award from the Ontario Ministry of Research and Innovation to FL, and by the University of Ottawa. We also thank an anonymous reviewer for many helpful comments, in particular, for the ideas of proofs in Propositions 2.2(b) and 2.5, and for suggesting Remark 2.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Vasilyeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilyeva, O., Lutscher, F. How Flow Speed Alters Competitive Outcome in Advective Environments. Bull Math Biol 74, 2935–2958 (2012). https://doi.org/10.1007/s11538-012-9792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9792-3

Keywords

Navigation