Skip to main content
Log in

An ODE Model of Early Stages of Atherosclerosis: Mechanisms of the Inflammatory Response

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic disease of the large arteries, characterized by fatty cholesterol-filled streaks and plaque build-up within the artery wall. Within the past decade, inflammation has been determined as a crucial factor in all stages of lesion formation, however, many of the mechanisms involved are not yet fully understood. We present a simplified ODE model that explores the role of inflammation in atherosclerosis. The model incorporates two of the main lesion constituents, cholesterol-carrying modified Low Density Lipoproteins (LDLs) and macrophage foam cells. Their complex interactions are combined into general functions, and the long-term model behaviour is investigated through phase plane analysis and simulations. Our results indicate that the underlying mechanisms of macrophage uptake of modified LDL can have a deep impact on the cellular dynamics in the lesion. Our model demonstrates that it is macrophage proliferation and constant signalling to the endothelial cells, rather than an increasing influx of modified LDL, that drives lesion instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cobbold, C.A., Sherratt, J.A., Maxwell, S.R.J., 2002. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull. Math. Biol. 64, 65–95.

    Article  Google Scholar 

  • Girn, H.R.S., Orsi, N.M., Homer-Vanniasinkam, S., 2007. An overview of cytokine interactions in atherosclerosis and implications for peripheral arterial disease. Vasc. Med. 12(4), 299–309.

    Article  Google Scholar 

  • Hansson, G.K., 2005. Mechanisms of disease: Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695.

    Article  Google Scholar 

  • Hansson, G.K., Libby, P., 2006. The immune response in atherosclerosis: a double-edged sword. Nature Immunology 6, 508–519.

    Article  Google Scholar 

  • Ibragimov, A.I., McNeal, C.J., Ritter, L.R., Walton, J.R., 2005. A mathematical model of atherogenesis as an inflammatory response. Math. Med. Biol. 22, 305–333.

    Article  MATH  Google Scholar 

  • Kharbanda, R., MacAllister, R., 2005. The atherosclerosis time-line and the role of the endothelium. Curr. Med. Chem. 5, 47–52.

    Google Scholar 

  • Kreisberg, R.A., Oberman, A., 2002. Lipids and atherosclerosis: Lessons learned from randomized controlled trials of lipid lowering and other relevant studies. J. Clin. Endocrinol. Metab. 87(2), 423–437.

    Article  Google Scholar 

  • Kunjathoor, V.V., Febbraio, M., Podrez, E.A., Moore, K.J., Andersson, L., Koehn, S., Rhee, J.S., Silverstein, R., Hoff, H.F., Freeman, M.W., 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277(51), 49982–49988.

    Article  Google Scholar 

  • Lendon, C.L., Davies, M.J., Born, G.V.R., Richardson, P.D., 1991. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87(1), 87–90.

    Article  Google Scholar 

  • Libby, P., 2002. Inflammation in atherosclerosis. Nature 420, 868–874.

    Article  Google Scholar 

  • Libby, P., Aikawa, M., 2002. Stabilization of atherosclerotic plaques: New mechanisms and clinical targets. Nat. Med. 8(11), 1257–1262.

    Article  Google Scholar 

  • Libby, P., Ridker, P.M., 2006. Inflammation and atherothrombosis: from population biology and bench research to clinical practice. J. Am. Coll. Cardiol. 48, A33–46.

    Article  Google Scholar 

  • Libby, P., Ridker, P.M., Maseri, A., 2002. Inflammation and atherosclerosis. Circulation 105, 1135–1143.

    Article  Google Scholar 

  • Liu, H., Shi, B., Huang, C.-C., Eksarko, P., Pope, R.M., 2008. Transcriptional diversity during monocyte to macrophage differentiation. Immunol. Lett. 117(1), 70–80.

    Article  Google Scholar 

  • Llodrá, J., Angeli, V., Liu, J., Trogan, E., Fisher, E.A., Randolph, G.J., 2004. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive plaques. Proc. Natl. Acad. Sci. USA 101(32), 11779–11784.

    Article  Google Scholar 

  • Lusis, A.J., 2000. Atherosclerosis. Nature 407.

  • Nicholson, A.C., Han, J., Febbraio, M., Silverstein, R.L., Hajjar, D.P., 2001. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann. N.Y. Acad. Sci. 947(1), 224–228.

    Article  Google Scholar 

  • Perko, L., 1991. Differential Equations and Dynamical Systems, 1st edn. Texts in Applied Mathematics, vol. 7, Springer, Berlin.

    MATH  Google Scholar 

  • Plank, M.J., Comerford, A., Wall, D.J.N., David, T., 2007. Modelling the early stages of atherosclerosis. In: Deutsch, A., Brusch, L., Byrne, H., de Vries, G., Herzel, H. (Eds.), Mathematical Modelling of Biological Systems, vol. 1, pp. 263–274. Birkhauser, Boston. Chap. 23.

    Chapter  Google Scholar 

  • Prosi, M., Zunino, P., Perktold, K., Quarteroni, A., 2005. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38, 903–917.

    Article  Google Scholar 

  • Resnick, N., Yahav, H., Shay-Salit, A., Shushy, M., Schubert, S., Zilberman, M., Chen, L., Wofovitz, E., 2003. Fluid shear stress and the vascular endothelium: for better and for worse. Progress Biophys. Molecular Biol. 81, 177–199(23).

    Article  Google Scholar 

  • Ross, R., 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340(2), 115–126.

    Article  Google Scholar 

  • Williams, K.J., Feig, J.E., Fisher, E.A., 2008. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat. Clinical Practice Cardiovasc. Med. 5(2), 91–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ougrinovskaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ougrinovskaia, A., Thompson, R.S. & Myerscough, M.R. An ODE Model of Early Stages of Atherosclerosis: Mechanisms of the Inflammatory Response. Bull. Math. Biol. 72, 1534–1561 (2010). https://doi.org/10.1007/s11538-010-9509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9509-4

Keywords

Navigation