Skip to main content

Advertisement

Log in

Optimal Timing of Disease Transmission in an Age-Structured Population

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

It is a common medical folk-practice for parents to encourage their children to contract certain infectious diseases while they are young. This folk-practice is controversial, in part, because it contradicts the long-term public health goal of minimizing disease incidence. We study an epidemiological model of infectious disease in an age-structured population where virulence is age-dependent and show that, in some cases, the optimal behavior will increase disease transmission. This provides a rigorous justification of the concept of “endemic stability,” and demonstrates that folk-practices may have been historically justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York.

    Google Scholar 

  • Arrow, K.J., Kurz, M., 1970. Public Investment, the Rate of Return, and Optimal Fiscal Policy. Hopkins Press, Baltimore.

    Google Scholar 

  • Brommer, J., Kokko, H., Pietiainen, H., 2000. Reproductive effort and reproductive values in periodic environments. Am. Nat. 155, 454–472.

    Article  Google Scholar 

  • Busenberg, S., van den Driessche, P., 1990. Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Coleman, P.G., Perry, B.D., Woolhouse, M.E.J., 2001. Endemic stability—a veterinary idea applied to human public health. Lancet 357, 1284–1286.

    Article  Google Scholar 

  • Del Valle, S., Hethcote, H., Hyman, J.M., Castillo-Chavez, C., 2005. Effects of behavioural changes in a smallpox attack model. Math. Biosci. 195, 228–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Grundmann, H., Hori, S., Winter, B., Tami, A., Austin, D.J., 2002. Risk factors for the transmission of methicillin-resistant Staphylococcus aureus in an adult intensive care unit: fitting a model to the data. J. Infect. Dis. 185, 481–488.

    Article  Google Scholar 

  • Hadeler, K.P., 1992. Periodic-solutions of homogeneous equations. J. Differ. Equ. 95, 183–202.

    Article  MATH  MathSciNet  Google Scholar 

  • Hadeler, K.P., Waldstatter, R., Worzbusekros, A., 1988. Models for pair formation in bisexual populations. J. Math. Biol. 26, 635–649.

    MATH  MathSciNet  Google Scholar 

  • Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Howard, R.A., 1960. Dynamic Programming and Markov Processes. MIT Press, Cambridge.

    MATH  Google Scholar 

  • Leavitt, J.W., 1997. Typhoid Mary: Captive to the Public’s Health. Beacon Press, Boston.

    Google Scholar 

  • Mandell, G.L., Bennett, J.E., Dolin, R. (Eds.), 2005. Principles and Practice of Infectious Disease. Elsevier, Philadelphia.

    Google Scholar 

  • Maynard Smith, J., 1982. Evolution and the Theory of Games, 1st edn. Cambridge University Press, London.

    MATH  Google Scholar 

  • McNamara, J.M., 1997. Optimal life histories for structured populations in fluctuating environments. Theor. Popul. Biol. 51, 94–108.

    Article  MATH  Google Scholar 

  • McNamara, J.M., Houston, A.I., Collins, E.J., 2001. Optimality models in behavioral biology. SIAM Rev. 43, 413–466.

    Article  MATH  MathSciNet  Google Scholar 

  • Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H., 1992. How should we define fitness for general ecological scenarios. Trends Ecol. Evol. 7, 198–202.

    Article  Google Scholar 

  • Morisse, J.P., Le Gall, G., Boilletot, E., 1991. Hepatitis of viral origin in Leporidae: Introduction and aetiological hypotheses. Rev. Sci. Tech. 10, 269–310.

    Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Nathanson, N., Martin, J., 1979. The epidemiology of poliomyelitis: enigmas surrounding its appearance and disappearance. Am. J. Epidemiol. 110, 672.

    Google Scholar 

  • Pado, F., 2005. Where the play dates are fun, but itchy. New York Times, August 21.

  • Panagiotopoulos, T., Antoniadou, I., Valassi-Adam, E., 1999. Increase in congenital rubella occurrence after immunisation in Greece: retrospective survey and systematic review. Br. Med. J. 319, 1462–1466.

    Google Scholar 

  • Parashar, U.D., Hummelman, E.G., Bresee, J.S., Miller, M.A., Glass, R.I., 2003. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565–572.

    Google Scholar 

  • Paul, J.R., 1971. A History of Poliomyelitis. Yale University Press, New Haven.

    Google Scholar 

  • Preblud, S.R., 1986. Varicella: complications and costs. Pediatrics 79, 728–735.

    Google Scholar 

  • van Baalen, M., 1998. Coevolution of recovery ability and virulence. Proc. Biol. Sci. 265, 317–325.

    Article  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, L., Shelokov, A., Seltser, R., Winchell, G.D., 1952. A comparison of the clinical features of poliomyelitis in adults and in children. New Engl. J. Med. 246, 297–302.

    Article  Google Scholar 

  • World Health Organization, 2000. Rubella vaccines. Weekly Epidemiol. Rec. 75, 161–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Reluga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reluga, T.C., Medlock, J., Poolman, E. et al. Optimal Timing of Disease Transmission in an Age-Structured Population. Bull. Math. Biol. 69, 2711–2722 (2007). https://doi.org/10.1007/s11538-007-9238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9238-5

Keywords

Navigation