Skip to main content
Log in

Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We discuss recent progress in the understanding of the global behavior of solutions to critical non-linear dispersive equations. The emphasis is on global existence, scattering and finite time blow-up. For solutions that are bounded in the critical norm, but which blow-up in finite time, we also discuss the issue of universal profiles at the blow-up time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121, 131–175 (1999)

    Article  MATH  Google Scholar 

  2. Bahouri H., Shatah J.: Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 783–789 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3, 107–156 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3, 209–262 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12, 145–171 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis H., Coron J.-M.: Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89, 21–56 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. CazenaveT. Weissler F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in H s, Nonlinear Anal.,14, 807–836 (1990)

    Article  MathSciNet  Google Scholar 

  8. Christodoulou D., Tahvildar-Zadeh A.S.: On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math., 46, 1041–1091 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. ChristodoulouD. Tahvildar-Zadeh A.S.: On the asymptotic behavior of spherically symmetric wave maps, Duke Math. J., 71, 31–69 (1993)

    Google Scholar 

  10. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy-critical Shrödinger equation in \({\mathbb{R}^3}\) ,. Ann. of Math. (2) 167, 767–865 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Côte R., KenigC. Merle F.: Scattering below critical energy for the radial 4D Yang–Mills equation and for the 2D corotational wave map system, Comm. Math. Phys., 284, 203–225 (2008)

    Article  MATH  Google Scholar 

  12. Ding W.Y.: On a conformally invariant elliptic equation on \({\mathbb{R}^n}\) , Comm. Math. Phys., 107, 331–335 (1986)

    Article  MATH  Google Scholar 

  13. B. Dodson, Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d ≥  3, preprint, 2009, arXiv:0912.2467.

  14. B. Dodson, Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d =  2, preprint, 2010, arXiv:1006.1375.

  15. B. Dodson, Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d =  1, preprint, 2010, arXiv:1010.0040.

  16. T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, 2008 (2008), rpn002, 67 p.

  17. Duyckaerts T., Merle F.: Dynamics of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18, 1787–1840 (2009)

    Article  MathSciNet  Google Scholar 

  18. Duyckaerts T., KenigC. Merle F.: Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), 13, 533–599 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Duyckaerts, C. Kenig and F. Merle, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the non-radial case, J. Eur. Math. Soc. (JEMS), to appear.

  20. L. Escauriaza, G.A. Serëgin and V. Šverák, L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. (Russian), Uspekhi Mat. Nauk, 58 (2003), no. 2, 3–44; translation in Russian Math. Surveys, 58 (2003), no. 2, 211–250.

    Google Scholar 

  21. I. Gallagher, G.S. Koch and F. Planchon, A profile decomposition approach to the \({{L^{\infty}_t}(L^{3}_{x})}\) Navier–Stokes regularity criterion, preprint, 2010, arXiv:1012.0145.

  22. B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n}\) , In: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7, Academic Press, New York, 1981, pp. 369–402.

  23. GinibreJ. Velo G.: On a class of nonlinear Schrödinger equations, J. Funct. Anal., 32, 1–71 (1979)

    Article  MathSciNet  Google Scholar 

  24. Ginibre J., Velo G.: Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133, 50–68 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Glangetas and F. Merle, A geometrical approach of existence of blow-up solutions in H 1 for nonlinear Schrödinger equation, Publications du Laboratoire d’Analyse Numerique, Univ. Pierre et Marie Curie, CNRS, December 1995.

  26. Glassey R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18, 1794–1797 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grillakis M.G.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math. (2) 132, 485–509 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kapitanski L.: Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., 1, 211–223 (1994)

    MATH  MathSciNet  Google Scholar 

  29. T. Kato, On the Cauchy problem for the (generalized) Korteweg–de Vries equation, In: Studies in Applied Mathematics, (ed. V. Guillemin), Adv. Math. Suppl. Stud., 8, Academic Press, 1983, pp. 93–128.

  30. Kato T.: On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46, 113–129 (1987)

    MATH  Google Scholar 

  31. C. Kenig, Global well-posedness and scattering for the energy critical focusing nonlinear Schrödinger and wave equations, lecture notes for a mini course given at “Analyse des equations aux derivées partialles”, Evian-les-Bains, 2007, available at http://www.math.uchicago.edu/~cek.

  32. C. Kenig, The concentration-compactness/rigidity theorem method for critical dispersive and wave equations, preprint, 2008, lectures for a course given at CRM, Bellaterra, Spain, May 2008, available at http://www.math.uchicago.edu/~cek.

  33. C. Kenig, Recent developments on the global behavior to critical nonlinear dispersive equations, Proc. of the ICM, Hyderabad, India, 2010, to appear.

  34. C. Kenig and G.S. Koch, An alternative approach to regularity for the Navier–Stokes equation in critical spaces, preprint, 2009, arXiv:0908.3349; Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear.

  35. Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 645–675 (2006)

    MATH  MathSciNet  Google Scholar 

  36. Kenig C., Merle F.: Global well-posedness, scatering and blow-up for the energy-critical focusing non-linear wave equation,. Acta Math. 201, 147–212 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kenig C., Merle F.: Scattering for 1/2 bounded solutions to the cubic defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 362, 1937–1962 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. C. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, preprint, 2008, arXiv:0810.4834v2; Amer. J. Math., to appear.

  39. C. Kenig and F. Merle, Radial solutions to energy supercritical wave equations in all odd dimensions, in preparation.

  40. Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, 527–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kenig C., Ponce G., Vega L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Non Linéaire 10, 255–288 (1993)

    MATH  MathSciNet  Google Scholar 

  42. R. Killip and M. Vişan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, preprint, 2008, arXiv:0804.1018[math.AP].

  43. R. Killip and M. Vişan, Energy-supercritical NLS: critical s-bounds imply scattering, preprint, 2008, arXiv:0812.2084.

  44. R. Killip and M. Vişan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions, preprint, 2010, arXiv:1001.1761.

  45. R. Killip and M. Vişan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, preprint, 2010, arXiv:1002.1756.

  46. R. Killip, T. Tao and M. Vişan, The cubic nonlinear Shrödinger equation in two dimensions with radial data, preprint, 2007, arXiv:0707.3188[math.AP]; J. Eur. Math. Soc. (JEMS), to appear.

  47. Killip R., Vişan M., Zhang X.: The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. PDE 1, 229–266 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Klainerman S., Machedon M.: Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46, 1221–1268 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Krieger J.: regularity of wave maps from \({\mathbb{R}^{2+1}}\) to H 2. Small energy. Comm. Math. Phys. 250, 507–580 (2004)

    MATH  MathSciNet  Google Scholar 

  50. Krieger J., Schlag W. Concentration compactness for critical wave maps, preprint, 2009, arXiv:0908.2474.

  51. Krieger J., Schlag W., Tataru D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171, 543–615 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Krieger J., Schlag W., Tataru D.: Slow blow-up solutions for the \({H^1(\mathbb{R}^3)}\) critical focusing semilinear wave equation. Duke Math. J. 147, 1–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  53. Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \({Pu_{tt}=-Au+\fancyscript{F}(u)}\) . Trans. Amer. Math. Soc. 192, 1–21 (1974)

    MATH  MathSciNet  Google Scholar 

  54. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1, 45–121 (1985)

    MATH  Google Scholar 

  55. Martel Y., Merle F.: A Liouville theorem for the critical generalized Korteweg–de Vries equation. J. Math. Pures Appl. (9) 79, 339–425 (2000)

    MATH  MathSciNet  Google Scholar 

  56. Martel Y., Merle F.: Stability of blow-up profile and lower bounds for the blow-up rate for the critical generalized KdV equation. Ann. of Math. (2) 155, 235–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Merle F., Raphaël P.: On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156, 565–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Merle F., Raphaël P.: Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Comm. Math. Phys. 253, 675–704 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  59. Merle F., Vega L.: Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. Internat. Math. Res. Notices 1998, 399–425 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  60. Pecher H.: Nonlinear small data scattering for the wave and Klein–Gordon equation. Math. Z. 185, 261–270 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  61. P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang–Mills problems, preprint, 2009, arXiv:0911.0692.

  62. I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical O(3) σ-model, preprint, 2008, arXiv:math/0605023; Ann. of Math. (2), to appear.

  63. Ryckman E., Vişan M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^{1+4}}\) , Amer. J. Math. 129, 1–60 (2007)

    MATH  Google Scholar 

  64. R. Schoen, Recent progress in geometric partial differential equations, In: Proceedings of ICM, Berkeley, Calif., 1986, 1, Amer. Math. Soc., Providence, RI, 1987, pp. 121–130.

  65. Segal I.: Space-time decay for solutions of wave equation. Advances in Math. 22, 305–311 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  66. Shatah J., Struwe M.: Well-posedness in the energy space for semilinear wave equations with critical growth. Internat. Math. Res. Notices 1994, 303–309 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  67. J. Shatah and M. Struwe, Geometric Wave Equations, Courant Lect. Notes Math., 2, New York Univ., Courant Inst. Math. Sci., New York, Amer. Math. Soc., Providence, RI, 1998, viii+153 p.

  68. Shatah J., Tahvildar-Zadeh A.S.: On the Cauchy problem for equivariant wave maps. Comm. Pure Appl. Math. 47, 719–754 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  69. J. Sterbenz and D. Tataru, Regularity of Wave-maps in dimension 2 + 1, preprint, 2009, arXiv:0907.3148.

  70. J. Sterbenz and D. Tataru, Energy dispersed large data wave maps in 2 + 1 dimensions, preprint, 2009, arXiv:0906.3384.

  71. Strichartz R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  72. Struwe M.: Globally regular solutions to the u 5 Klein–Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15, 495–513 (1988)

    MATH  MathSciNet  Google Scholar 

  73. M. Struwe, Radially symmetric wave maps from (1 + 2)-dimensional Minkowski space to the sphere, Math. Z., 242 (2002), 407–414.

  74. Struwe M.: Equivariant wave maps in two space dimensions. Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56, 815–823 (2003)

    MATH  MathSciNet  Google Scholar 

  75. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  76. Tao T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices 2001, 299–328 (2001)

    Article  MATH  Google Scholar 

  77. Tao T.: Global regularity of wave maps. II. Small energy in two dimensions. Comm. Math. Phys. 224, 443–544 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  78. Tao T.: Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data. New York J. Math. 11, 57–80 (2005) (electronic)

    MATH  MathSciNet  Google Scholar 

  79. T. Tao, Global regularity of wave maps III. Large energy from \({\mathbb{R}^{1+2}}\) to hyperbolic spaces, preprint, 2008, arXiv:0805.4666v1[math.AP].

  80. T. Tao, Global regularity of wave maps IV. Absence of stationary or self-similar solutions in the energy class, preprint, 2008, arXiv:0806.3592[math.AP].

  81. Tao T., Vişan M., Zhang X.: Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J. 140, 165–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  82. Tataru D.: Local and global results for wave maps. I. Comm. Partial Differential Equations 23, 1781–1793 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  83. Tataru D.: On global existence and scattering for the wave maps equation. Amer. J. Math. 123, 37–77 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  84. Tsutsumi Y.: L 2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac. 30, 115–125 (1987)

    MATH  MathSciNet  Google Scholar 

  85. Vişan M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138, 281–374 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Kenig.

Additional information

Communicated by: Toshiyuki Kobayashi

This article is based on the 9th Takagi Lectures that the author delivered at Research Institute for Mathematical Sciences, Kyoto University on June 4, 2011.

Supported in part by NSF grants DMS-0456583 and DMS-0968472.

About this article

Cite this article

Kenig, C. Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles. Jpn. J. Math. 6, 121–141 (2011). https://doi.org/10.1007/s11537-011-1108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-011-1108-0

Keywords and Phrases

Mathematics Subject Classification (2010)

Navigation