Skip to main content
Log in

Abstract.

In the last thirty years three a priori very different fields of mathematics, optimal transport theory, Riemannian geometry and probability theory, have come together in a remarkable way, leading to a very substantial improvement of our understanding of what may look like a very specific question, namely the analysis of spaces whose Ricci curvature admits a lower bound. The purpose of these lectures is, starting from the classical context, to present the basics of the three fields that lead to an interesting generalisation of the concepts, and to highlight some of the most striking new developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P. Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus, Mémoires présentés par divers savants à l’Académie des Sciences de l’Institut de France, 29 (1887), 1–208.

    MathSciNet  Google Scholar 

  2. D. Bakry, L’hypercontractivité et son utilisation en théorie des semi-groupes, In: Lectures on Probability Theory, École d’Été de Probabilités de Saint-Flour, Lecture Notes in Math., 1581, Springer-Verlag, 1994, pp. 1–114.

  3. D. Bakry and M. Émery, Diffusions hypercontractives, In: Séminaire de Probabilités XIX, Lecture Notes in Math., 1123, Springer-Verlag, 1985, pp. 177–206.

  4. P. Bérard, G. Besson and S. Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal., 4 (1994), 373–398.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-P. Bourguignon, Ricci curvature and Einstein metrics, In: Global Differential Geometry and Global Analysis, Lecture Notes in Math., 838, Springer-Verlag, 1981, pp. 42–63.

  6. J.-P. Bourguignon, Invariants intégraux fonctionnels pour des équations aux dérivées partielles d’origine géométrique, In: Differential Geometry, Peñíscola, 1985, Lecture Notes in Math., 1209, Springer-Verlag, 1986, pp. 100–108.

  7. J.-P. Bourguignon, L’équation de la chaleur associée à la courbure de Ricci, In: Séminaire Bourbaki, Vol. 1985/86, Exposé 653, Astérisque, 145-146, 1987, pp. 45–61.

  8. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375–417.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), 406–480; II, ibid., 54 (2000), 13–35; III, ibid., 54 (2000), 37–74.

  10. X.-X. Chen and W.-Y. He, The space of volume forms, Univ. Wisconsin, Madison, preprint, 2008.

  11. E.B. Christoffel, Über die transformation der homogenen differentialausdrücke zweiten grades, J. Reine Angew. Math., 70 (1869), 46–70.

    Google Scholar 

  12. A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437–443.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, third ed., Universitext, Springer-Verlag, 2004.

  14. W. Gangbo, An elementary proof of the polar factorization of vector-valued functions, Arch. Rational Mech. Anal., 128 (1994), 381–399.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, based on the 1981 French original, Progr. Math., 152, Birkhäuser Boston, Boston, MA, 1999.

  16. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Kähler, Über eine bemerkenswerte Hermitesche Metrik, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 173–186.

    Article  Google Scholar 

  18. L.V. Kantorovich, On the translocation of masses, Dokl. Akad. Nauk. USSR (N.S.), 37 (1942), 199–201; English translation, J. Math. Sci., 133 (2006), 1381–1382.

  19. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, In: Séminaire de Probabilités XXXIII, Lecture Notes in Math., Springer-Verlag, 1999, pp. 120–216.

  20. J. Lott, Some geometric properties of the Bakry– Émery–Ricci tensor, Comment. Math. Helv., 78 (2003), 865–883.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Lott, Optimal transport and Ricci curvature for metric-measure spaces, In: Metric and Comparison Geometry, (eds. J. Cheeger and K. Grove), Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, pp. 229–257.

  22. J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), to appear (2008).

  23. X.-N. Ma, N.S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151–183.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Mabuchi, K-energy maps integrating Futaki invariants, Tohuku Math. J. (2), 38 (1986), 575–593.

  25. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80 (1995), 309–323.

    Article  MATH  MathSciNet  Google Scholar 

  26. R.J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589–608.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Monge, Mémoire sur la théorie des déblais et des remblais, Mém. Math. Phys. Acad. Royale Sci., 1781, 666–704

  28. S.-I. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, to appear.

  29. S.-I. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math., to appear.

  30. S.-I. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., to appear.

  31. F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101–174.

    Article  MATH  MathSciNet  Google Scholar 

  32. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361–400.

    Article  MATH  MathSciNet  Google Scholar 

  33. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.

  34. M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923–940.

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Ricci-Curbastro, Direzioni et invarianti principali in una varietà qualunque, Atti del Real Inst. Venezio, 63 (1904), 1233–1239.

    Google Scholar 

  36. K.-T. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl. (9), 84 (2005), 149–168.

    Google Scholar 

  37. K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65–131; II, ibid., 196 (2006), 133–177.

  38. N.S. Trudinger and X.-J. Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations, 13 (2001), 19–31.

    Article  MATH  MathSciNet  Google Scholar 

  39. C. Villani, Optimal transportation, dissipative PDE’s and functional inequalities, In: Optimal Transportation and Applications, Martina Franca, 2001, Lecture Notes in Math., 1813, Springer-Verlag, 2003, pp. 53–89.

  40. C. Villani, Optimal Transport, Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009.

  41. G.-F. Wei, Manifolds with a lower Ricci curvature bound, In: Metric and Comparison Geometry, (eds. J. Cheeger and K. Grove), Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 203–227.

  42. G.-F. Wei and W. Wylie, Comparison geometry for the Bakry– Émery Ricci tensor, Proc. Int. Congress Chinese Mathematicians, to appear (2007).

  43. S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Comm. Pure Appl. Math., 31 (1978), 339–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Bourguignon.

Additional information

Communicated by: Toshiyuki Kobayashi

This article is based on the 5th Takagi Lectures that the author delivered at the University of Tokyo on October 4 and 5, 2008.

About this article

Cite this article

Bourguignon, JP. Ricci curvature and measures. Jpn. J. Math. 4, 27–45 (2009). https://doi.org/10.1007/s11537-009-0855-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-009-0855-7

Keywords and phrases:

Mathematics Subject Classification (2000):

Navigation