Skip to main content
Log in

Continuity properties of the integrated density of states on manifolds

  • Original Article
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We first analyze the integrated density of states (IDS) of periodic Schrödinger operators on an amenable covering manifold. A criterion for the continuity of the IDS at a prescribed energy is given along with examples of operators with both continuous and discontinuous IDS.

Subsequently, alloy-type perturbations of the periodic operator are considered. The randomness may enter both via the potential and the metric. A Wegner estimate is proven which implies the continuity of the corresponding IDS. This gives an example of a discontinuous “periodic” IDS which is regularized by a random perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. T. Adachi, A note on the Følner condition for amenability, Nagoya Math. J., 131 (1993), 67–74.

    MATH  MathSciNet  Google Scholar 

  2. T. Adachi and T. Sunada, Density of states in spectral geometry, Comment. Math. Helv., 68 (1993), 480–493.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.Š. Birman and M.Z. Solomjak, Estimates for the singular numbers of integral operators, Uspehi Mat. Nauk, 32 (1977), 17–84, 271; English transl., Russian Math. Surveys, 32 (1977), 15–89.

  4. M.Š. Birman and D.R. Yafaev, The spectral shift function. The work of M.G. Krein and its further development, St. Petersburg Math. J., 4 (1993), 833–870.

    MathSciNet  Google Scholar 

  5. J.F. Brasche, Upper bounds for Neumann–Schatten norms, Potential Anal., 14 (2001), 175–205.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv., 56 (1981), 581–598.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.

    MATH  Google Scholar 

  8. J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15–53.

    MATH  MathSciNet  Google Scholar 

  9. J.-M. Combes, P.D. Hislop and S. Nakamura, The L p-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators, Comm. Math. Phys., 218 (2001), 113–130.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Constantinescu, J. Fröhlich and T. Spencer, Analyticity of the density of states and replica method for random Schrödinger operators on a lattice, J. Statist. Phys., 34 (1984), 571–596.

    Article  MATH  MathSciNet  Google Scholar 

  11. H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Texts Monogr. Phys., Springer-Verlag, 1987.

  12. J. Dodziuk, Sobolev spaces of differential forms and de Rham-Hodge isomorphism, J. Differential Geom., 16 (1981), 63–73.

    MATH  MathSciNet  Google Scholar 

  13. J. Dodziuk, P. Linnell, V. Mathai, T. Schick and S. Yates, Approximating L 2-invariants, and the Atiyah conjecture, Comm. Pure Appl. Math., 56 (2003), 839–873.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Eichhorn, Elliptic differential operators on noncompact manifolds, In: Seminar Analysis of the Karl-Weierstrass-Institute of Mathematics, 1986/87, Berlin, 1986/87, Teubner-Texte Math., 106, Teubner, Leipzig, 1988, pp. 4–169.

  15. P. Exner, M. Helm and P. Stollmann, Localization on a quantum graph with a random potential on the edges, Rev. Math. Phys., 19 (2007), 923–939, arXiv.org/math-ph/0612087.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys., 88 (1983), 151–184.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.

  18. M.J. Gruber, Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators, Math. Nachr., 233-234 (2002), 111–127.

    Article  MathSciNet  Google Scholar 

  19. M. Gruber and I. Veselić, The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs, Random Oper. Stochastic Equations, in press, arXiv.org/abs/0707.1486.

  20. M. Helm and I. Veselić, Linear Wegner estimate for alloy type Schrödinger operators on metric graphs, J. Math. Phys., 48 (2007), 092107, p. 7, arXiv.org/abs/math/0611609.

  21. P.D. Hislop and F. Klopp, The integrated density of states for some random operators with nonsign definite potentials, J. Funct. Anal., 195 (2002), 12–47.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Hislop and O. Post, Anderson localization for radial tree-like random quantum graphs, preprint, arXiv.org/math-ph/0611022.

  23. M.E.H. Ismail and R. Zhang, On the Hellmann-Feynman theorem and the variation of zeros of certain special functions, Adv. Appl. Math., 9 (1988), 439–446.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Kato, Perturbation Theory of Linear Operators, Springer-Verlag, 1966.

  25. W. Kirsch, Wegner estimates and Anderson localization for alloy-type potentials, Math. Z., 221 (1996), 507–512.

    MATH  MathSciNet  Google Scholar 

  26. S. Klassert, D. Lenz and P. Stollmann, Discontinuities of the integrated density of states for random operators on Delone sets, Comm. Math. Phys., 241 (2003), 235–243, arXiv.org/math-ph/0208027.

    MATH  MathSciNet  Google Scholar 

  27. F. Klopp, Localization for some continuous random Schrödinger operators, Comm. Math. Phys., 167 (1995), 553–569.

    Article  MATH  MathSciNet  Google Scholar 

  28. W. Kirsch and F. Martinelli, On the ergodic properties of the spectrum of general random operators, J. Reine Angew. Math., 334 (1982), 141–156.

    MATH  MathSciNet  Google Scholar 

  29. W. Kirsch and F. Martinelli, On the spectrum of Schrödinger operators with a random potential, Comm. Math. Phys., 85 (1982), 329–350.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Kobayashi, K. Ono and T. Sunada, Periodic Schrödinger operators on a manifold, Forum Math., 1 (1989), 69–79.

    Article  MATH  MathSciNet  Google Scholar 

  31. V. Kostrykin and R. Schrader, A random necklace model, Waves in Random Media, 14 (2004), S75–S90, arXiv.org/math-ph/0309032.

  32. V. Kostrykin and I. Veselić, On the Lipschitz continuity of the integrated density of states for sign-indefinite potentials, Math. Z., 252 (2006), 367–392, arXiv.org/math-ph/0408013.

    Article  MATH  MathSciNet  Google Scholar 

  33. P.A. Kuchment, On the Floquet theory of periodic difference equations, In: Geometrical and algebraical aspects in several complex variables, Cetraro, 1989, Sem. Conf., 8, EditEl, Rende, 1991, pp. 201–209.

  34. P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993.

  35. E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259–295.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Lenz, N. Peyerimhoff and I. Veselić, Groupoids, von Neumann algebras, and the integrated density of states, Math. Phys. Anal. Geom., 10 (2007), 1–41, arXiv.org/math-ph/0203026.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Lenz, N. Peyerimhoff and I. Veselić, Integrated density of states for random metrics on manifolds, Proc. London Math. Soc. (3), 88 (2004), 733–752.

    Article  MATH  MathSciNet  Google Scholar 

  38. D.H. Lenz and P. Stollmann, An ergodic theorem for Delone dynamical systems and existence of the density of states, J. Anal. Math., 97 (2005), 1–24, http://xxx.lanl.gov/abs/math-ph/0310017.

  39. S. Nakamura, A remark on the Dirichlet–Neumann decoupling and the integrated density of states, J. Funct. Anal., 179 (2001), 136–152.

    Article  MATH  MathSciNet  Google Scholar 

  40. L.A. Pastur and A.L. Figotin, Spectra of Random and Almost-Periodic Operators, Springer-Verlag, 1992.

  41. N. Peyerimhoff and I. Veselić, Integrated density of states for ergodic random Schrödinger operators on manifolds, Geom. Dedicata, 91 (2002), 117–135.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV, Analysis of Operators, Academic Press, San Diego, 1978.

    MATH  Google Scholar 

  43. W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Co., Singapore, 1987.

    MATH  Google Scholar 

  44. G. Salomonsen, Equivalence of Sobolev spaces, Results Math., 39 (2001), 115–130.

    MATH  MathSciNet  Google Scholar 

  45. P. Sarnak, Entropy estimates for geodesic flows, Ergodic Theory Dynam. Systems, 2 (1982-83), 513–524.

    Article  MATH  MathSciNet  Google Scholar 

  46. Th. Schick, Analysis on δ-manifolds of bounded geometry, Hodge–de Rham isomorphism and L 2-index theorem, Ph. D. thesis, Universität Mainz, 1996, http://www.uni-math.gwdg.de/schick/publ/dissschick.htm.

  47. Th. Schick, Manifolds with boundary and of bounded geometry, Math. Nachr., 223 (2001), 103–120.

    Article  MATH  MathSciNet  Google Scholar 

  48. Z. Shen, The periodic Schrödinger operators with potentials in the Morrey class, J. Funct. Anal., 193 (2002), 314–345.

    Article  MATH  MathSciNet  Google Scholar 

  49. B. Simon, Trace ideals and their applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge, 1979.

  50. B. Simon and M. Taylor, Harmonic analysis on SL(2,R) and smoothness of the density of states in the one-dimensional Anderson model, Comm. Math. Phys., 101 (1985), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  51. P. Stollmann, Wegner estimates and localization for continuum Anderson models with some singular distributions, Arch. Math. (Basel), 75 (2000), 307–311.

    MATH  MathSciNet  Google Scholar 

  52. P. Stollmann, Caught by disorder: A course on bound states in random media, Prog. Math. Phys., 20, Birkhäuser, 2001.

  53. D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom., 25 (1987), 327–351.

    MATH  MathSciNet  Google Scholar 

  54. T. Sunada, Fundamental groups and Laplacians, In: Geometry and analysis on manifolds, Katata/Kyoto, 1987, Lecture Notes in Math., 1339, Springer-Verlag, 1988, pp. 248–277.

  55. T. Sunada, A periodic Schrödinger operator on an abelian cover, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37 (1990), 575–583.

    MATH  MathSciNet  Google Scholar 

  56. I. Veselić, Quantum site percolation on amenable graphs, In: Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer-Verlag, 2005, pp. 317–328, arXiv.org/math-ph/0308041.

  57. I. Veselić, Spectral analysis of percolation Hamiltonians, Math. Ann., 331 (2005), 841–865, arXiv.org/math-ph/0405006.

    Article  MathSciNet  MATH  Google Scholar 

  58. I. Veselić, Existence and regularity properties of the integrated density of states of random Schrödinger operators, Lecture Notes in Math., 1917, Springer-Verlag, 2008, http://www.tu-chemnitz.de/mathematik/enp/habil.pdf.

  59. F. Wegner, Bounds on the density of states in disordered systems, Z. Phys. B, 44 (1981), 9–15.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lenz.

Additional information

Communicated by: Kaoru Ono

About this article

Cite this article

Lenz, D., Peyerimhoff, N., Post, O. et al. Continuity properties of the integrated density of states on manifolds. Jpn. J. Math. 3, 121–161 (2008). https://doi.org/10.1007/s11537-008-0729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-008-0729-4

Keyword and phrases

Mathematics Subject Classification (2000)

Navigation