Skip to main content
Log in

On the excursion theory for linear diffusions

Japanese Journal of Mathematics Aims and scope

Abstract.

We present a number of important identities related to the excursion theory of linear diffusions. In particular, excursions straddling an independent exponential time are studied in detail. Letting the parameter of the exponential time tend to zero it is seen that these results connect to the corresponding results for excursions of stationary diffusions (in stationary state). We characterize also the laws of the diffusion prior and posterior to the last zero before the exponential time. It is proved using Krein’s representations that, e.g. the law of the length of the excursion straddling an exponential time is infinitely divisible. As an illustration of the results we discuss the Ornstein–Uhlenbeck processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. Alili, P. Patie and J. L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process, Stoch. Models, 21 (2005), 967–980.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bertoin, T. Fujita, B. Roynette and M. Yor, On a particular class of self-decomposable random variables: The duration of a Bessel excursion straddling an independent exponential time, Probab. Math. Statist., 26 (2006).

  3. J.-M. Bismut, Last exit decompositions and regularity at the boundary of transition probabilities, Z. Wahrsch. Verw. Gebiete, 69 (1985), 65–98.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. M. Blumenthal, Excursions of Markov Processes, Birkhäuser, Basel, Berlin, Boston, 1992.

    MATH  Google Scholar 

  5. L. Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statist., 76, Springer-Verlag, 1992.

  6. A. N. Borodin and P. Salminen, Handbook of Brownian Motion – Facts and Formulae, 2nd edition, Birkhäuser, Basel, Berlin, Boston, 2002.

    MATH  Google Scholar 

  7. K. L. Chung, Excursions in Brownian motion, Ark. Mat., 14 (1976), 155–177.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. L. Doob, The Brownian movement and stochastic equations, Ann. of Math. (2), 43 (1942), 351–369.

    Article  MathSciNet  Google Scholar 

  9. R. Durrett and D. I. Iglehart, Functionals of Brownian meander and Brownian excursion, Ann. Probab., 5 (1977), 130–135.

    MATH  MathSciNet  Google Scholar 

  10. H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probab. Math. Statist., 31, Academic Press, New York, San Francisco, London, 1976.

  11. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953.

    Google Scholar 

  12. D. Freedman, Brownian motion and diffusions, Holden-Day, San Fransisco, U. S. A., 1971.

    Google Scholar 

  13. R. K. Getoor, Excursions of a Markov process, Ann. Probab., 7 (1979), 244–266.

    MATH  MathSciNet  Google Scholar 

  14. R. K. Getoor and M. J. Sharpe, Last exit decompositions and distributions, Indiana Univ. Math. J., 23 (1973), 377–404.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. K. Getoor and M. J. Sharpe, Last exit times and additive functionals, Ann. Probab., 1 (1973), 550–569.

    MATH  MathSciNet  Google Scholar 

  16. R. K. Getoor and M. J. Sharpe, Excursions of Brownian motion and Bessel processes, Z. Wahrsch. Verw. Gebiete, 47 (1979), 83–106.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. K. Getoor and M. J. Sharpe, Excursions of dual processes, Adv. Math., 45 (1982), 259–309.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Giorno, A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Some remarks on the Rayleigh process, J. Appl. Probab., 23 (1986), 398–408.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Göing-Jaeschke and M. Yor, A clarification note about hitting times densities for Ornstein-Uhlenbeck processes, Finance Stoch., 7 (2003), 413–415.

    Article  MATH  Google Scholar 

  20. J. Hawkes and A. Truman, Statistics of local time and excursions for the Ornstein-Uhlenbeck process, In: Stochastic analysis, Proceedings of the Durham Symposium in Stochastic Analysis, 1990, London Math. Soc. Lecture Note Ser., 167, Cambridge Univ. Press, 1991, pp. 91–101.

  21. K. Itô, Poisson point processes attached to Markov processes, In: Proceedings of the Sixth Berkeley Symposium Mathematical Statistics Probability, Vol. III, Univ. California, Berkeley, 1970, pp. 225–239.

  22. K. Itô and H. P. McKean, Diffusion processes and their sample paths, Springer-Verlag, 1974.

  23. S. Karlin and H. M. Taylor, A second course in stochastic processes, Academic Press, San Diego, 1981.

    MATH  Google Scholar 

  24. J. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete, 52 (1980), 309–319.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Kent, The spectral decomposition of a diffusion hitting time, Ann. Probab., 10 (1982), 207–219.

    MATH  MathSciNet  Google Scholar 

  26. F. Knight, Characterization of the Lévy measures of inverse local times of gap diffusion, In: Seminar on Stochastic Processes, 1981, (eds. E. Cinlar, K. L. Chung and R. K. Getoor), Birkhäuser, Boston, 1981, pp. 53–78.

    Google Scholar 

  27. S. Kotani and S. Watanabe, Krein’s spectral theory of strings and generalized diffusion processes, In: Functional Analysis and Markov Processes, (ed. M. Fukushima), Lecture Notes in Math., 923, Springer-Verlag, 1981.

  28. M. Kozlova and P. Salminen, A note on occupation times of stationary processes, Electron. Comm. Probab., 10 (2005), 94–104.

    MATH  MathSciNet  Google Scholar 

  29. G. K. Kristiansen, A proof of Steutel’s conjecture, Ann. Probab., 22 (1994), 442–452.

    MATH  MathSciNet  Google Scholar 

  30. U. Küchler and P. Salminen, On spectral measures of strings and excursions of quasi diffusions, In: Séminaire de Probabilités, XXIII, (eds. J. Azéma, P. A. Meyer and M. Yor), Lecture Notes in Math., 1372, Springer-Verlag, 1989, pp. 490–502.

  31. P. Lévy, Sur certains processus stochastiques homogènes, Compositio Math., 7 (1939), 283–339.

    MATH  MathSciNet  Google Scholar 

  32. V. Linetsky, Computing hitting time densities for CIR and OU diffusions: Applications to mean reverting models, J. Comput. Finance, 7 (2004), 1–22.

    MathSciNet  Google Scholar 

  33. B. Maisonneuve, Exit systems, Ann. Probab., 3 (1975), 399–411.

    MATH  MathSciNet  Google Scholar 

  34. S. Meleard, Application du calcul stochastique à l’étude de processus de Markov réguliers sur [0,1], Stochastics, 19 (1986), 41–82.

    MATH  MathSciNet  Google Scholar 

  35. P. A. Meyer, Processus de Poisson ponctuels, d’après K. Itô, In: Séminaire de Probabilités, V, (eds. C. Dellacherie and P. A. Meyer), Lecture Notes in Math., 191, Springer-Verlag, 1971.

  36. M. Nagasawa, Time reversions of Markov processes, Nagoya Math. J., 24 (1964), 177–204.

    MATH  MathSciNet  Google Scholar 

  37. J. Pitman, Stationary excursions, In: Séminaire de Probabilités, XXI, (eds. J. Azéma, P. A. Meyer and M. Yor), Lecture Notes in Math., 1247, Springer-Verlag, 1986, pp. 289–302.

  38. J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete, 59 (1982), 425–457.

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Pitman and M. Yor, Decomposition at the maximum for excursions and bridges of one-dimensional diffusions, In: Itô’s stochastic calculus and probability theory. Tribute dedicated to Kiyoshi Itô on the occasion of his 80th birthday, (eds. N. Ikeda et al.), Tokyo, 1996, pp. 293–310.

  40. J. Pitman and M. Yor, On the lengths of excursions of some Markov processes, In: Séminaire de Probabilités, XXXI, (eds. J. Azéma, M. Émery, M. Ledoux and M. Yor), Lecture Notes in Math., 1655, Springer-Verlag, 1997, pp. 272–286.

  41. J. Pitman and M. Yor, Laplace transforms related to excursions of a one-dimensional diffusion, Bernoulli, 5 (1999), 249–255.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Pitman and M. Yor, Itô’s excursion theory and its applications, Japan. J. Math., 2 (2007), 83–96.

    Google Scholar 

  43. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition, Springer-Verlag, 2001.

  44. L. M. Ricciardi and S. Sato, First passage-time density and moments of the Ornstein-Uhlenbeck process, J. Appl. Probab., 25 (1988), 43–57.

    Article  MATH  MathSciNet  Google Scholar 

  45. L. C. G. Rogers, Williams’ characterization of the Brownian excursion law: Proof and applications, In: Séminaire de Probabilités, XV, (eds. J. Azéma and M. Yor), Lecture Notes in Math., 850, Springer-Verlag, 1981, pp. 227–250.

  46. L. C. G. Rogers, A guided tour through excursions, Bull. London Math. Soc., 21 (1989), 305–341.

    Article  MATH  MathSciNet  Google Scholar 

  47. L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2: Itô Calculus, John Wiley & Sons, Chichester, New York, 1987.

    Google Scholar 

  48. P. Salminen, On conditional Ornstein-Uhlenbeck processes, Adv. in Appl. Probab., 16 (1984), 920–922.

    Article  MATH  MathSciNet  Google Scholar 

  49. P. Salminen, On last exit decomposition of linear diffusions, Studia Sci. Math. Hungar., 33 (1997), 251–262.

    MATH  MathSciNet  Google Scholar 

  50. S. Sato, Evaluation of the first passage time probability to a square root boundary for the Wiener process, J. Appl. Probab., 14 (1977), 850–856.

    Article  MATH  Google Scholar 

  51. J. B. Walsh, Excursions and local time, Astérisque, 52-53 (1978), 159–192.

    Google Scholar 

  52. D. Williams, Path decompositions and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc. (3), 28 (1974), 738–768.

    Article  MATH  MathSciNet  Google Scholar 

  53. M. Winkel, Electronic foreign-exchange markets and passage events of independent subordinators, J. Appl. Probab., 42 (2005), 138–152.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paavo Salminen.

Additional information

Communicated by: Toshiyuki Kobayashi

About this article

Cite this article

Salminen, P., Vallois, P. & Yor, M. On the excursion theory for linear diffusions. Jpn. J. Math. 2, 97–127 (2007). https://doi.org/10.1007/s11537-007-0662-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-007-0662-y

Keywords and phrases:

Mathematics Subject Classification (2000):

Navigation