Skip to main content
Log in

Classification of the long-QT syndrome based on discriminant analysis of T-wave morphology

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The long QT syndrome (LQTS) is a genetic disorder, typically characterized by a prolonged QT interval in the ECG due to abnormal cardiac repolarization. LQTS may lead to syncopal episodes and sudden cardiac death. Various parameters based on T-wave morphology, as well as the QT interval itself have been shown to be useful discriminators, but no single ECG parameter has been sufficient to solve the diagnostic problem. In this study we present a method for discrimination among persons with a normal genotype and those with mutations in the KCNQ1 (KvLQT1 or LQT1) and KCNH2 (HERG or LQT2) genes on the basis of parameters describing T-wave morphology in terms of duration, asymmetry, flatness and amplitude. Discriminant analyses based on 4 or 5 parameters both resulted in perfect discrimination in a learning set of 36 subjects. In both cases cross-validation of the resulting classifiers showed no misclassifications either.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acar B (1999) New approaches to T-wave analysis from surface ECG. Card Electrophysiol Rev 3:319–323

    Article  Google Scholar 

  2. Alberti M (1990) Electrocardiographic precordial interlead variability in normal individuals and patients with long QT syndrome. Comp Cardiol 17:475–478

    Google Scholar 

  3. Bazett HC (1920) An analysis of the time-relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  4. Couderc J-Ph, Zareba W, Moss AJ (2003) Drug-induced changes of ventricular repolarization: new incentives for quantifying T wave morphology. Int J Bioelectromagn 5:167–170

    Google Scholar 

  5. Dibernardo D, Langley PH, Murray A (2002) Effect of changes in heart rate and in action potential duration on the electrocardiogram T wave shape. Physiol Meas 23:355–364

    Article  Google Scholar 

  6. Hair JF, Tatham RL, Anderson RE, Black W (1984) Multivariate data analysis. Prentice Hall, New Jersey

    Google Scholar 

  7. Jervell A, Lange-Nielsen F (1957) Congenital deaf-mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J 89:378–379

    Google Scholar 

  8. Kanters JK, Larsen LA, Orholm M, Agner E, Andersen PS, Vuust J, Christiansen M (1998) Novel donor splice site mutation in the KVLQT1 gene is associated with long QT syndrome. J Cardiovasc Electrophysiol 9:620–624

    Article  Google Scholar 

  9. Kanters JK, Fanoe S, Larsen LA, Thomsen PEB, Toft E, Christiansen M (2004) T-wave morphology analysis distinguishes between KvLQT1 and HERG mutations in long QT syndrome. Heart Rhythm 1:285–292

    Article  Google Scholar 

  10. Laguna P, Thakor NV, Caminal P, Jane R, Yoon HR, Bayes de Luna A, Marti V, Guindo J (1990) New algorithm for QT interval analysis in 24-hour Holter ECG: performance and applications. Med Biol Eng Comput 28:67–73

    Article  Google Scholar 

  11. Larsen LA, Andersen PS, Kanters JK, Jacobsen JR, Vuust J, Christiansen M (1999) ‘A single strand conformation polymorphism/heteroduplex (SSCP/HD) method for detection of mutations in 15 exons of the KVLQT1 gene, associated with long QT syndrome’. Clin Chim Acta 280:113–125

    Article  Google Scholar 

  12. Larsen LA, Andersen PS, Kanters JK, Svendsen IH, Jacobsen JR, Vuust J, Wettrell G, Tranebjaerg L, Bathen J, Christiansen M (2001) Screening for mutations and polymorphisms in the genes KCNH2 and KCNE2 encoding the cardiac HERG/MiRP1 ion channel: implications for acquired and congenital long Q-T syndrome. Clin Chem 47:1390–1395

    Google Scholar 

  13. Locati EH, Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Lehmann MH et al (1998) Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome findings from the International LQTS Registry. Circulation 97:2237–2244

    Google Scholar 

  14. Lupoglazoff JM, Denjoy I, Berthet M, Neyroud N, Demay L, Richard P, Hainque B, Vaksmann G, Klug D, Leenhardt A, Maillard G, Coumel P, Guicheney P (2001) Notched T waves on Holter recordings enhance detection of patients with LQT2 (HERG) mutations. Circulation 103:1095–1101

    Google Scholar 

  15. Merri M, Alberti M, Benhorin J, Hall WJ, Locati E, Moss AJ (1989) Quantitation of ventricular repolarization: a new approach. IEEE EMBS Conf 11:85–87

    Google Scholar 

  16. Moss AJ, Zarebra W, Benhorin J, Locati EH, Hall WJ, Robinson JL, Schwarz PJ, Towbin JA, Vincent GM, Lehmann MH (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92:2929–2934

    Google Scholar 

  17. Padrini R (1999) Mathematical models of the T-wave shape. Card Electrophysiol Rev 3:314–318

    Article  Google Scholar 

  18. Padrini R, Butrous G, Statters D, Camm AJ, Malik M (2001) Morphological algebraic models of the TU-wave patterns in idiopathic long QT syndrome. Int J Cardiol 77:151–162

    Article  Google Scholar 

  19. Priori SG, Bloise R, Crotti L (2001) The long QT syndrome. Europace 3:16–27

    Article  Google Scholar 

  20. Romano C (1965) Congenital cardiac arrhythmia. Lancet 1:658–659

    Article  Google Scholar 

  21. Sasamori A (1994) A new approach to measure ventricular repolarization duration in 24-hour Holter ECG based on T-wave morphology classification. Comp Cardiol 21:589–592

    Google Scholar 

  22. Schwartz PJ (2001) Arrhythmias associated with the long QT syndrome. In: Malik M (ed) Risk of arrhythmia and sudden death. BMJ Books, London

    Google Scholar 

  23. Schwartz PJ, Moss AJ, Vincent GM, Crampton AS (1993a) Diagnostic criteria for the long QT syndrome: an update. Circulation 88:782–784

    Google Scholar 

  24. Schwartz PJ, Moss AJ, Vincent JM, Crampton RS (1993b) Diagnostic criteria for the long QT syndrome. An update. Circulation 88:782–784

    Google Scholar 

  25. Seber GAF (1984) Multivariate observations. Wiley, New York

    MATH  Google Scholar 

  26. Vila JA, Yi Gang, Presedo JMR, Fernandez-Delgado M, Barro S, Malik M (2000) A new approach for TU-complex characterization. IEEE Tr BME 47:762–762

    Google Scholar 

  27. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Vanraay TJ, Shen J, Timothy KW, Vincent GM, De Jager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12(1):17–23

    Article  Google Scholar 

  28. Ward OC (1965) The electrocardiographic abnormality in familial cardiac arrhythmia. Ir J Med Sci 6:553–557

    Google Scholar 

  29. Wehrens XH, Vos MA, Doevendans PA, Wellens HJ (2002) Novel insights in the congenital long QT syndrome’. Ann Intern Med 137:981–992

    Google Scholar 

  30. Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Robinson JL, Priori SG et al (1998) Influence of genotype on the clinical course of the long-QT syndrome’: International Long-QT Syndrome Registry Research Group. N Engl J Med 339:960–5

    Article  Google Scholar 

  31. Zhang L, Timothy KW, Vincent GM, Lehmann MH, Fox JLC, Giuli LC, Shen J, Splawski I, Priori SG, Compton SJ, Yanowitz F, Benhorin J, Moss AJ, Schwartz PJ, Robinson JL, Wang Q, Zarebra W, Keating MT, Towbin JA, Napolitano C, Medina A (2000) Spectrum of ST-T wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 102:2849–2855

    Google Scholar 

  32. Zipes DP, Jalife J (eds) (1995) Cardiac electrophysiology—from cell to bedside. W.B. Saunders, Philadelphia

Download references

Acknowledgment

We thank Knud Larsen for his help with the conversion of SCP files (Standard Communication Protocol) to MAT files (MatLab data format).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Struijk.

Additional information

Patent pending—EPO 03029363.3—2305

Appendix

Appendix

The mean, width, asymmetry and flatness of the T-wave are calculated according to

$$ m_{p} = {\left[ {{\sum\limits_{n = 0}^{N - 1} {{\left( {t_{n} - {\text{ref}}} \right)}^{p} \cdot {\text{ecg}}(t_{n} )} }} \right]}^{{1/p}} $$
(2)

for p = 1, 2, 3, and 4, respectively, and where ref is the reference (ref = 0 for calculation of m 1 ). The area of the T-wave was normalized before the m p was calculated (Table 4).

Table 4 List of parameters to characterize the T-wave

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struijk, J.J., Kanters, J.K., Andersen, M.P. et al. Classification of the long-QT syndrome based on discriminant analysis of T-wave morphology. Med Bio Eng Comput 44, 543–549 (2006). https://doi.org/10.1007/s11517-006-0061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0061-1

Keywords

Navigation