Skip to main content
Log in

Membrane electroporation theories: a review

  • REVIEW ARTICLE
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Electroporation, the transient increase in the permeability of cell membranes when exposed to a high electric field, is an established in vitro technique and is used to introduce DNA or other molecules into cells. When the trans-membrane voltage induced by an external electric field exceeds a certain threshold (normally 0.2–1 V), a rearrangement of the molecular structure of the membrane occurs, leading to pore formation in the membrane and a considerable increase in the cell membrane permeability to ions, molecules and even macromolecules. This phenomenon is, potentially, the basis for many in vivo applications such as electrochemotherapy and gene therapy, but still lacks a comprehensive theoretical basis. This article reviews the state of current electroporation theories and briefly considers current and potential applications in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer membranes: 1. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    Article  Google Scholar 

  2. Aksimentiev A, Jiunn BH, Timp G, Schulten K (2004) Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys J 87:2086–2097

    Article  PubMed  Google Scholar 

  3. Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1998) Essential cell biology. Garland Publishing, New York, NY

    Google Scholar 

  4. Al-Khadra A, Nikolski V, Efimov IR (2001) The role of electroporation in defibrillation. Circ Res 87:797–804

    Google Scholar 

  5. Alvarez O, Latorre RE (1978) Voltage dependent capacitance in lipid bilayers made from monolayers. Biophys J 21:1–17

    PubMed  Google Scholar 

  6. Ashihara T, Yao T, Namba T, Makoto I, Ikeda T, Kawase A, Toda S, Suzuki T, Inagaki M, Sugimachi M, Kinoshita M, Nakazawa K (2001) Electroporation in a model of defibrillation. J Cardiovasc Res 12:1393–1403

    Google Scholar 

  7. Baker PF, Knight DE (1978) A high-voltage technique for gaining rapid access to the interior of secretory cells. J Physiol 284:30–31

    Google Scholar 

  8. Baker PF, Knight DE (1979) Influence of anions on exocytosis in ‘leaky’ bovine adrenal medullary cells. J Physiol 296:106–107

    Google Scholar 

  9. Barnett A, Weaver JC (1991) Electroporation: a unified, quantitative theory of reversible breakdown and rupture. Biolectrochem Bioenerg 25:163–182

    Article  Google Scholar 

  10. Benz R, Beckers F, Zimmerman U (1979) Reversible electrical breakdown of lipid bilayer membranes: a charge pulse relaxation study. J Membr Biol 48:181–204

    Article  PubMed  Google Scholar 

  11. Chang DC (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. Guide to electroporation and electrofusion. Academic, Orlando, FL, pp 9–27

    Google Scholar 

  12. Crowley JM (1973) Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J 13:711–724

    PubMed  Google Scholar 

  13. DeBruin KA, Krassowska W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    PubMed  Google Scholar 

  14. Dimitrov DS (1984) Electric field-induced breakdown of lipid bilayers and cell membranes: a thin viscoelastic film model. J Membr Biol 78:53–60

    Article  PubMed  Google Scholar 

  15. Engstrom PE, Persson BR, Salford LG (1999) Studies of in vivo electropermeabilisation by gamma camera measurements of (99m)Tc-DTPA. Biochim Biophys Acta 1428:321–328

    Google Scholar 

  16. Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore–pore separation. Biophys J 67:42–56

    PubMed  Google Scholar 

  17. Gauger B, Bentrup FW (1979) A study of dielectric membrane breakdown in the Fucus egg. J Membr Biol 48(3):249–264

    Article  PubMed  Google Scholar 

  18. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  PubMed  Google Scholar 

  19. Gothelf A, Mir LM, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29:371–387

    Article  PubMed  Google Scholar 

  20. Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632–1642

    Google Scholar 

  21. Hoekstra D (1994) Cell lipids, current topics in membranes, vol 40. Academic Press, New York, NY, International Standard Serial Number: 0070-2161

  22. Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Article  PubMed  Google Scholar 

  23. Jaroszeski MJ, Gilbert R, Heller R (2000) Electrically mediated delivery of molecules to cells: electrochemotherapy, electrogenetherapy and transdermal delivery by electroporation. Humana Press, Totowa, NJ

    Google Scholar 

  24. Joshi RP, Schoenbach KH (2000) Electroporation dynamics in biological cells subjected to ultrafast electrical pulses. Phys Rev E 62:1025–1033

    Article  Google Scholar 

  25. Joshi RP, Hu Q, Aly R, Schoenbach KH, Hjalmarson HP (2001) Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort pulses. Phys Rev E 64:011913-1–011913-10

    Article  Google Scholar 

  26. Joshi RP, Hu Q, Schoenbach KH, Hjalmarson HP (2002) Improved energy model for membrane electroporation in biological cells subjected to electrical pulses. Phys Rev E 65:041920-1–041920-8

    Google Scholar 

  27. Kinosita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membranes. Nature 268:438–443

    Article  PubMed  Google Scholar 

  28. Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzhev YA (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J 60:804–811

    PubMed  Google Scholar 

  29. Kotnik T, Mir LM, Flisar K, Puc M, Miklav ID (2001) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part I. Increased efficiency of permeabilization. Bioelectrochemistry 54:83–89

    Article  PubMed  Google Scholar 

  30. Krakowsky I, Romijn T, Posthuman ADB (1989) A few remarks on the electrostriction of elastomers. J Appl Phys 85:628–629

    Article  Google Scholar 

  31. Krassowska W (1995) Effects of electroporation on transmembrane potential induced by defibrillation shocks. Pacing Clin Electrophysiol 18:1644–1660

    Article  PubMed  Google Scholar 

  32. Lewis TJ (2003) A model for bilayer membrane electroporation based on resultant electromechanical stress. IEEE Trans Dielectr Electr Insul 10:754–768

    Article  Google Scholar 

  33. Litster JD (1975) Stability of lipid bilayers and red blood cell membranes. Phys Lett 53A:193–194

    Google Scholar 

  34. Maldarelli C, Jain R, Ruckstein E (1980) J Colloid Interface Sci 72:118–125

    Article  Google Scholar 

  35. Michael DH, O’Neil ME (1970) Electrohydrodynamic instability in plane layers of fluid. J Fluid Mech 41:571–580

    Article  MATH  Google Scholar 

  36. Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    PubMed  Google Scholar 

  37. Miller IR (1981) Structural and energetic aspects of charge transport in lipid bilayers and biological membranes. In: Milazzo G (eds) Topics in bioelectrochemistry and bioenergetics, vol 4. Wiley, New York, NY, pp 161–224

    Google Scholar 

  38. Mir LM (2000) Therapeutic perspectives of in vivo cell electropermeabislisation. Bioelectrochemistry 53:1–10

    Article  Google Scholar 

  39. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566

    Article  PubMed  Google Scholar 

  40. Neu JC, Krassowski W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  Google Scholar 

  41. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  PubMed  Google Scholar 

  42. Neumann E, Sprafke A, Boldt E, Wolf H (1992) Biophysical digression on membrane electroporation. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic, Orlando, FL, pp 77–90

    Google Scholar 

  43. Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    Article  PubMed  Google Scholar 

  44. Nicoloff Jac A (1995) Animal cell electroporation and electrofusion protocols. Humana, Totowa, NJ

    Google Scholar 

  45. Pastushenko VF, Chizmadzhev YA, Arakelyan VB (1979) Electric breakdown of bilayer membranes: II. Calculation of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochem Bioenerg 6:63–70

    Article  Google Scholar 

  46. Petrov AG, Mitov MD, Dershanki AI (1980) Edge energy and pore stability in bilayer lipid membranes. In: Bata L (eds) Advances in liquid crystal research and applications. Pergamon, Oxford, pp 695–737

    Google Scholar 

  47. Phez E, Faurie C, Golzio M, Teissie J, Rols M-P (2005) New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim Biophyis Acta 1724:248–254

    Google Scholar 

  48. Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance trans-dermal drug delivery. Proc Natl Acad Sci USA 90:10504–10508

    Article  PubMed  Google Scholar 

  49. Puc M, Kotnik T, Mir LM, Miklav ID (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60(1–2):1–10

    Article  PubMed  Google Scholar 

  50. Sale AJH, Hamilton WA (1967) Effects of high fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788

    Google Scholar 

  51. Sek WH (1992) Effects of pulse length and strength on electroporation efficiency. Animal cell electroporation and electrofusion protocols. Humana Press, Totowa, NJ

    Google Scholar 

  52. Shane C (2005) Introductory biology, available at http://web.mit.edu/esgbio/www/cb/ membranes/structure.html, Version 7.014

  53. Sokirko AV (1994) Distribution of the electric field in an axially symmetric pore. Bioectrochem Bioenerg 33:25–30

    Article  Google Scholar 

  54. Stämpfli R (1958) Reversible electrical breakdown of the excitable membrane of a Ranvier node. Ann Acad Brazil Ciens 30:57–63

    Google Scholar 

  55. Steinchen A, Gallez D, Sanfield A (1982) J Colloid Interface Sci 85:5–12

    Article  Google Scholar 

  56. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, NY

    MATH  Google Scholar 

  57. Sugar IP (1979) A theory of the electric field-induced phase-transition of phospholipid bilayers. Biochim Biophys Acta 556:72–85

    Article  PubMed  Google Scholar 

  58. Suzuki T, Shin BC, Fujikura K, Matsuzaki T, Takata K (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 425:436–440

    Article  PubMed  Google Scholar 

  59. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophysical J 88:4045–4053

    Article  Google Scholar 

  60. Taupin C, Dvolaitzky, Sauterey C (1975) Osmotic pressure induced pores in phospholipid vesicles. Biochemistry 14:4771–4775

    Article  PubMed  Google Scholar 

  61. Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilisation: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280

    PubMed  Google Scholar 

  62. Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512–11516

    Article  PubMed  Google Scholar 

  63. Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Molecular dynamics simulation of pore formation in phospholipid bilayers by mechanical force and electric fields. J Am Chem Soc 125:6382–6383

    Article  PubMed  Google Scholar 

  64. Tien HT (1974) Bilayer lipid membranes. Marcel Dekker, New York, NY

    Google Scholar 

  65. Tien HT, Ottova A (2003) The bilayer lipid membrane (BLM) under electrical fields. IEEE Trans Dielectr Electr Insul 10:717–727

    Article  Google Scholar 

  66. Tsong TY (1987) Electric modification of membrane permeability for drug loading into living cells. Methods Enzymol 149:248–259

    PubMed  Google Scholar 

  67. Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    PubMed  Google Scholar 

  68. Weaver JC (2000) Electroporation of cells and tissues. IEEE Trans Plasma Sci 28:24–33

    Article  Google Scholar 

  69. Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10(5):754–768

    Article  MathSciNet  Google Scholar 

  70. Weaver JC, Mintzer RA (1981) Bilayer stability due to trans-membrane potentials. Phys Lett 86A:57–59

    Google Scholar 

  71. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  Google Scholar 

  72. Zimmermann U, Vienken J, Pilwat G (1980) Development of drug carrier systems: electrical field induced effects in cell membranes. Bioelectrochem Bioenerg 7:553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.W. Smye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Smye, S., Robinson, M. et al. Membrane electroporation theories: a review. Med Bio Eng Comput 44, 5–14 (2006). https://doi.org/10.1007/s11517-005-0020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-005-0020-2

Keywords

Navigation