Skip to main content
Log in

Culinary Biophysics: on the Nature of the 6X°C Egg

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Shell-on eggs cooked by immersion in water at low and constant temperatures (∼60–70 °C) yield yolks with very particular textures. Structure development in such unique cooking conditions is far from understood. The present study shows that egg yolk, despite its compositional complexity, follows typical gelation kinetics found in many globular proteins and that it can develop structure at temperatures as low as 56 °C. It follows that yolk texture is dictated by time/temperature combinations. Under isothermal, low temperature cooking conditions, the thickening and gelation kinetics of egg yolk follow Arrhenius-type kinetic relationships. The energy of activation of these processes was ∼470 kJ mol−1, which agrees well with the values reported for the denaturation and gelation of the thermally labile chicken serum albumin and immunoglobulin Y. Results are related to common foodstuffs in order to allow chefs and home cooks to achieve a priori conceived textures in egg yolks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Vega, Egg yolk: A library of Textures, in The kitchen as a laboratory: science reflections inspired by the kitchen, ed. by C. Vega, J. Ubbink, E. van der Linden (Columbia University Press, New York, 2011)

    Google Scholar 

  2. C. Vega, J. Ubbink, Trends Food Sci. Technol. 19, 372–382 (2008)

    Article  CAS  Google Scholar 

  3. D. Buay, S.K. Foong, D. Kiang, L. Kuppan, V.H. Liew, Eur. J. Phys. 27, 119–131 (2006)

    Article  Google Scholar 

  4. P. Roura, P. Fort, J. Saurina, Eur. J. Phys. 21, 95–100 (2000)

    Article  Google Scholar 

  5. P. Gadsby (2007) Cooking for eggheads. Discover magazine. Available at: http://discovermagazine.com/2006/feb/cooking-for-eggheads

  6. H. This, Molecular Gastronomy: Exploring the Science of Flavor (Columbia University Press, New York, 2006)

    Google Scholar 

  7. K. Mann, M. Mann, Proteomics 8, 178–191 (2008)

    Article  CAS  Google Scholar 

  8. M. Le Denmat, M. Anton, V. Beaumal, Food Hydrocolloids 14, 539–549 (2000)

    Article  Google Scholar 

  9. V. Kiosseoglou, A. Paraskevopoulou, Food Hydrocolloids 19, 527–532 (2005)

    Article  CAS  Google Scholar 

  10. F. Guilmineau, I. Krause, U. Kulozik, J. Agric. Food Chem. 53, 9329–9336 (2005)

    Article  CAS  Google Scholar 

  11. D.K. Dixon, O.J. Cotterill, J. Food Sci. 46, 981–983 (1981)

    Article  CAS  Google Scholar 

  12. M. Le Denmat, M. Anton, G. Gandemer, J. Food Sci. 64, 194–197 (1999)

    Article  Google Scholar 

  13. N. Matsudomi, K. Ito, Y. Yoshika, Biosci. Biotechnol. Biochem. 70, 836–842 (2006)

    Article  CAS  Google Scholar 

  14. P.F. Predki, C. Harford, P. Brar, B. Sarkar, Biochem. J. 287, 211–215 (1992)

    CAS  Google Scholar 

  15. C.W. Heizman, G. Muller, E. Jenny, K.J. Wilson, F. Landon, A. Olomucki, Proc. Natl Acad. Sci. USA 78, 74–77 (1981)

    Article  CAS  Google Scholar 

  16. C. Giancola, C. De Sena, D. Fessas, G. Graziano, G. Barone, Int. J. Biol. Macromol. 20, 193–204 (1997)

    Article  CAS  Google Scholar 

  17. Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, K. Takeda, J. Phys. Chem. B 112, 16585–16589 (2008)

    Article  CAS  Google Scholar 

  18. N. Matsudomi, D. Rector, J.E. Kinsella, Food Chem. 40, 55–69 (1991)

    Article  CAS  Google Scholar 

  19. A. Tobitani, S.B. RossMurphy, Macromolecules 30, 4845–4854 (1997)

    Article  CAS  Google Scholar 

  20. X. Cao, J. Li, X. Yang, Y. Duan, Y. Liu, C. Wang, Thermochim. Acta 467, 99–106 (2008)

    Article  CAS  Google Scholar 

  21. S. Baier, J. McClements, J. Agric. Food Chem. 49, 2600–2608 (2001)

    Article  CAS  Google Scholar 

  22. M. Shimizu, H. Nagashima, K. Hashimoto, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 106, 255–261 (1993)

    Article  CAS  Google Scholar 

  23. H.E. Indyk, J.W. Williams, H.A. Patel, Int. Dairy J. 18, 359–366 (2008)

    CAS  Google Scholar 

  24. A.W.P. Vermeer, W. Norde, Biophys. J. 78, 394–404 (2000)

    Article  CAS  Google Scholar 

  25. A.W.P. Vermeer, C.E. Giacomelli, W. Norde, Biochimica et Biophysica Acta (BBA)-General Subjects 1526, 61–69 (2001)

    Article  CAS  Google Scholar 

  26. D.J. Oldfield, H. Singh, M.W. Taylor, K.N. Pearce, Int. Dairy J. 8, 311–318 (1998)

    Article  Google Scholar 

  27. E. Lichan, A. Kummer, J.N. Losso, D.D. Kitts, S. Nakai, Food Res. Int. 28, 9–16 (1995)

    Article  CAS  Google Scholar 

  28. C. D. H. Williams (2010) The science of boiling an egg. Available at: http://newton.ex.ac.uk/teaching/CDHW/egg/

  29. S. Stølen, J. Vedde, Kunsten å koke et egg (2010) Available at: http://www.kjemi.uio.no/publikum/popularkjemi/egg/

  30. S.L. Polley, O.P. Snyder, P. Kotnour, Food Technol. 34, 76–91 (1980)

    Google Scholar 

  31. S. Almonacid, R. Simpson, A. Teixeira, J. Food Sci. 72, E508–E517 (2007)

    Article  CAS  Google Scholar 

  32. S. Denys, J.G. Pieters, K. Dewettinck, J. Food Eng. 63, 281–290 (2004)

    Article  Google Scholar 

  33. H. Yamashita, J. Ishibashi, Y.H. Hong, M. Hirose, Biosci. Biotechnol. Biochem. 62, 593–595 (1998)

    Article  CAS  Google Scholar 

  34. M.A.M. Hoffmann, J.C. van Miltenburg, P.J.J.M. Van Mil, Thermochim. Acta 306, 45–49 (1997)

    Article  CAS  Google Scholar 

  35. C. Le Bon, T. Nicolai, D. Durand, Macromolecules 32, 6120–6127 (1999)

    Article  Google Scholar 

  36. E. Doi, Trends Food Sci. Technol. 4, 1–5 (1993)

    Article  CAS  Google Scholar 

  37. A.H. Clark, G.M. Kavanagh, S.B. Ross-Murphy, Food Hydrocolloids 15, 383–400 (2001)

    Article  CAS  Google Scholar 

  38. W.S. Gosal, S.B. Ross-Murphy, Curr. Opin. Colloid Interface Sci. 5, 188–194 (2000)

    Article  CAS  Google Scholar 

  39. F. Cordobes, P. Partal, A. Guerrero, Rheologica Acta 43, 184–195 (2004)

    Article  CAS  Google Scholar 

  40. M. Anton, M. Le Denmat, V. Beaumal, P. Pilet, Colloids Surf., B 21, 137–147 (2001)

    Article  CAS  Google Scholar 

  41. F. Chambon, H.H. Winter, J. Rheol. 31, 683–697 (1987)

    Article  CAS  Google Scholar 

  42. N.R. Pollen, C. Daubert, P. Prabhasankar, M. Drake, M.L. Gumpertz, J. Texture Stud. 35, 643–657 (2004)

    Article  Google Scholar 

  43. A. Guerrero, J. Carmona, I. Martinez, F. Cordobes, P. Partal, Rheologica Acta 43, 539–549 (2004)

    Article  CAS  Google Scholar 

  44. T. Tsutsui, J. Food Sci. 53, 1103–1106 (1988)

    Article  CAS  Google Scholar 

  45. R. Nakamura, T. Fukano, M. Taniguchi, J. Food Sci. 47, 1449–1453 (1982)

    Article  CAS  Google Scholar 

  46. J.M. Aguilar, F. Cordobes, A. Jerez, A. Guerrero, Rheologica Acta 46, 731–740 (2007)

    Article  CAS  Google Scholar 

  47. F. Cordobes, J.A. Carmona, I. Martinez, P. Partal, A. Guerrero, Gums and Stabilizers for the Food Industry 12 (Springer, Berlin, 2004)

    Google Scholar 

  48. S. Jayaraman, D. Gantz, O. Gursky, Biochemistry 44, 3965–3971 (2005)

    Article  CAS  Google Scholar 

  49. F. Speroni, M.C. Puppo, N. Chapleau, M. de Lamballerie, O. Castellani, M.C. Anon, M. Anton, J. Agric. Food Chem. 53, 5719–5725 (2005)

    Article  CAS  Google Scholar 

  50. P. Barham, L.H. Skibsted, W.L.P. Bredie, M. Bom Frøst, P. Møller, J. Risbo, P. Snitjær, L.M. Mortensen, Chem. Rev. 110, 2313–2365 (2010)

    Article  CAS  Google Scholar 

  51. J. Unsworth, F.J. Duarte, Am. J. Phys. 47, 981–983 (1979)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Vega.

Appendix

Appendix

The analytical solution of the dynamic process of heating by conduction of a sphere was provided by Unsworth and Duarte.51 The temperature at the centre of the sphere is given by

$$ {T_c}(t) = {T_b} - \left( {{T_b} - {T_0}} \right)\sum\limits_{{n = 1}}^{\infty } {{{\left( { - 1} \right)}^{{n + 1}}}{e^{{ - {n^2}\lambda t}}}} $$
(1)

where λ = π2 α/r 2; α is the thermal diffusivity, and r is the radius of the sphere. Buay et al.3 expanded Eq. 1 for prolate spheroids not too different than a sphere, using the equivalent radius r e instead of r.

$$ {r_e} = \frac{{2ab}}{{b + \beta a}} $$
(2)

where 2a and 2b are the major and minor axes, and β= arcsin(e)/e, where e is the ellipticity \( \left( {e = \sqrt {{1 - {b^2}/{a^2}}} } \right) \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, C., Mercadé-Prieto, R. Culinary Biophysics: on the Nature of the 6X°C Egg. Food Biophysics 6, 152–159 (2011). https://doi.org/10.1007/s11483-010-9200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9200-1

Keywords

Navigation