Skip to main content

Advertisement

Log in

Adrenergic and Dopaminergic Modulation of Immunity in Multiple Sclerosis: Teaching Old Drugs New Tricks?

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an autoimmune disorder of the CNS characterized by inflammation, demyelination and axonal loss. Classical evidence in experimental allergic encephalomyelitis, the animal model of MS, support the relevance of sympatoadrenergic as well as of dopaminergic mechanisms. In MS patients, dysregulation of adrenergic and dopaminergic pathways contribute to the disease in immune system cells as well as in glial cells. Available evidence is summarized and discussed also in the light of the novel role of dopamine, noradrenaline and adrenaline as transmitters in immune cells, providing a conceptual frame to exploit the potential of several dopaminergic and adrenergic agents, already in clinical use for non-immune indications and with a usually favourable risk-benefit profile, as add-on drugs to conventional immunomodulating therapies in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aminoff MJ (1992) Autonomic dysfunction in central nervous system disorders. Curr Opin Neurol Neurosurg 5:482–486

    PubMed  CAS  Google Scholar 

  • Arnason BG, Brown M, Maselli R, Karaszewski J, Reder A (1988) Blood lymphocyte beta-adrenergic receptors in multiple sclerosis. Ann N Y Acad Sci 540:585–588

    Article  PubMed  CAS  Google Scholar 

  • Audus KL, Gordon MA (1982) Characteristics of tryciclic antidepressant binding sites associated with murine lymphocytes from spleen. J Immunopharmacol 4:1–12

    PubMed  CAS  Google Scholar 

  • Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Muszynska A, Przybyłkowski A, Członkowska A, Członkowski A (2007a) MPTP-induced central dopamine depletion exacerbates experimental autoimmune encephalomyelitis (EAE) in C57BL mice. Inflamm Res 56:311–317

    Article  PubMed  CAS  Google Scholar 

  • Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Członkowska A, Członkowski A (2007b) Dopamine, serotonin and noradrenaline changes in the striatum of C57BL mice following myelin oligodendrocyte glycoprotein (MOG) 35–55 and complete Freund adjuvant (CFA) administration. Acta Neurobiol Exp (Wars) 67:379–388

    Google Scholar 

  • Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  • Bencsics A, Sershen H, Baranyi M, Hashim A, Lajtha A, Vizi ES (1997) Dopamine, as well as norepinephrine, is a link between noradrenergic nerve terminals and splenocytes. Brain Res 761:236–243

    Article  PubMed  CAS  Google Scholar 

  • Bergquist J, Silberring J (1998) Identification of catecholamines in the immune system by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 12:683–688

    Article  PubMed  CAS  Google Scholar 

  • Berkeley MB, Daussin S, Hernandez MC, Bayer BM (1994) In vitro effects of cocaine, lidocaine and monoamine uptake inhibitors on lymphocyte proliferative responses. Immunopharmacol Immunotoxicol 16:165–178

    Article  PubMed  CAS  Google Scholar 

  • Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169:161–171

    Article  PubMed  CAS  Google Scholar 

  • Bissay V, De Klippel N, Herroelen L, Schmedding E, Buisseret T, Ebinger G, De Keyser J (1994) Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin Neuropharmacol 17:473–476

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Caron M, Civelli O, Kebabian JW, Langer SZ, Scatton B, Schwartz J-C, Sedvall G, Seeman P, Sokoloff P, Spano PF, Van Tol HHM (2012) Dopamine receptors. Last modified on 27/02/2012. Accessed on 02/08/2012. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=20

  • Chelmicka-Schorr E, Arnason BG (1999) Interactions between the sympathetic nervous system and the immune system. Brain Behav Immun 13:271–278

    Article  CAS  Google Scholar 

  • Chelmicka-Schorr E, Checinski M, Arnason BG (1988) Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J Neuroimmunol 17:347–350

    Article  PubMed  CAS  Google Scholar 

  • Chelmicka-Schorr E, Kwasniewski MN, Thomas BE, Arnason BG (1989) The beta-adrenergic agonist isoproterenol suppresses experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 25:203–207

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Marino F (2012) Nerve-driven immunity: noradrenaline and adrenaline. In: Levite M (ed) Nerve-driven-immunity – Neurotransmitters and neuropeptides in the immune system. Springer-Verlag, Wien, pp 47–96, 2012

    Chapter  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64:975–981

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Bombelli R, Ferrari M, Marino F, Rasini E, Maestroni GJM, Conti A, Boveri M, Lecchini S, Frigo G (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68:283–295

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo GM (2002a) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients:effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133:233–240

    Article  CAS  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002b) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133

    Article  CAS  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes:open questions. Trends Immunol 24:581–582

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-γ and interferon-β affect endogenous catecholamines in human peripheral blood mononuclear cells:implications for multiple sclerosis. J Neuroimmunol 162:112–121

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4 + CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642

    Article  PubMed  CAS  Google Scholar 

  • Cosentino M, Zaffaroni M, Trojano M, Giorelli M, Pica C, Rasini E, Bombelli R, Ferrari M, Ghezzi A, Comi G, Livrea P, Lecchini S, Marino F (2012) Dopaminergic modulation of CD4 + CD25 regulatory T lymphocytes in multiple sclerosis patients during interferon-β therapy. Neuroimmunomodulation 19:283–292

    Article  PubMed  CAS  Google Scholar 

  • Davids E, Hartwig U, Gastpar M (2004) Antipsychotic treatment of psychosis associated with multiple sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 28:743–744

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53:1628–1633

    Article  PubMed  Google Scholar 

  • De Keyser J, Zeinstra E, Frohman E (2003) Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch. Neurol 60:132–136

    Article  Google Scholar 

  • De Keyser J, Zeinstra E, Wilczak N (2004) Astrocytic beta2-adrenergic receptors and multiple sclerosis. Neurobiol Dis 15:331–339

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 28:1645–1651

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Laureys G, Demol F, Wilczak N, Mostert J, Clinckers R (2010) Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 57:446–450

    Google Scholar 

  • Del Rio MJ, Velez-Pardo C (2002) Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: involvement of hydrogen peroxide (H(2)O(2)), caspase-3, and nuclear factor kappa-B (NF-kappaB), p53, c-Jun transcription factors. Biochem Pharmacol 63:677–688

    Article  PubMed  Google Scholar 

  • Dijkstra CD, van der Voort ER, De Groot CJ, Huitinga I, Uitdehaag BM, Polman CH, Berkenbosch F (1994) Therapeutic effect of the D2-dopamine agonist bromocriptine on acute and relapsing experimental allergic encephalomyelitis. Psychoneuroendocrinology 19:135–142

    Article  PubMed  CAS  Google Scholar 

  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    PubMed  CAS  Google Scholar 

  • Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, Frigo G (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67:865–873

    Article  PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725

    Article  PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora's box? Mol Med 14:195–204

    PubMed  CAS  Google Scholar 

  • Foster HD, Hoffer A (2004) The two faces of L-DOPA: benefits and adverse side effects in the treatment of Encephalitis lethargica, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Med Hypotheses 62:177–181

    Article  PubMed  CAS  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis - the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  PubMed  CAS  Google Scholar 

  • Gade-Andavolu R, MacMurray JP, Blake H, Muhleman D, Tourtellotte W, Comings DE (1998) Association between the gamma-aminobutyric acid A3 receptor gene and multiple sclerosis. Arch Neurol 55:513–516

    Article  PubMed  CAS  Google Scholar 

  • Gallai V, Sarchielli P, Firenze C, Trequattrini A, Paciaroni M, Usai F, Franceschini M, Palumbo R (1994) Neuropeptide Y plasma levels and serum dopamine-beta-hydroxylase activity in MS patients with and without abnormal cardiovascular reflexes. Acta Neurol Belg 94:44–52

    PubMed  CAS  Google Scholar 

  • Giorelli M, Livrea P, Trojano M (2004) Post-receptorial mechanisms underlie functional disregulation of beta2-adrenergic receptors in lymphocytes from Multiple Sclerosis patients. J Neuroimmunol 155:143–149

    Article  PubMed  CAS  Google Scholar 

  • Giorelli M, Livrea P, Trojano M (2005) Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-beta. J Interferon Cytokine Res 25:395–406

    Article  PubMed  CAS  Google Scholar 

  • Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE (2011) {alpha}1-Adrenergic receptors positively regulate toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 338:648–657

    Article  PubMed  CAS  Google Scholar 

  • Haensch CA, Jörg J (2006) Autonomic dysfunction in multiple sclerosis. J Neurol 253(Suppl 1):I3–I9

    Article  PubMed  Google Scholar 

  • Hartung HP, Bar-Or A, Zoukos Y (2004) What do we know about the mechanism of action of disease-modifying treatments in MS? J Neurol 251(Suppl 5):v12–v29

    Article  PubMed  CAS  Google Scholar 

  • Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76

    Article  PubMed  CAS  Google Scholar 

  • Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung HP (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211

    Article  PubMed  CAS  Google Scholar 

  • Huber TJ, Dietrich DE, Emrich HM (1999) Possible use of amantadine in depression. Pharmacopsychiatry 32:47–55

    Article  PubMed  CAS  Google Scholar 

  • Javed A, Reder AT (2006) Therapeutic role of beta-interferons in multiple sclerosis. Pharmacol Ther 110:35–56

    Article  PubMed  CAS  Google Scholar 

  • Karaszewski JW, Reder AT, Maselli R, Brown M, Arnason BG (1990) Sympathetic skin responses are decreased and lymphocyte beta-adrenergic receptors are increased in progressive multiple sclerosis. Ann Neurol 27:366–372

    Article  PubMed  CAS  Google Scholar 

  • Karaszewski JW, Reder AT, Anlar B, Kim WC, Arnason BG (1991) Increased lymphocyte beta-adrenergic receptor density in progressive multiple sclerosis is specific for the CD8+, CD28- suppressor cell. Ann Neurol 30:42–47

    Article  PubMed  CAS  Google Scholar 

  • Karaszewski JW, Reder AT, Anlar B, Arnason GW (1993) Increased high affinity beta-adrenergic receptor densities and cyclic AMP responses of CD8 cells in multiple sclerosis. J Neuroimmunol 43:1–7

    Article  PubMed  CAS  Google Scholar 

  • Karpus WJ, Konkol RJ, Killen JA (1988) Central catecholamine neurotoxin administration. 1. Immunological changes associated with the suppression of experimental autoimmune encephalomyelitis. J Neuroimmunol 18:61–73

    Article  PubMed  CAS  Google Scholar 

  • Kasper LH, Shoemaker J (2010) Multiple sclerosis immunology: The healthy immune system vs the MS immune system. Neurology 74(suppl 1):S2–S8

    Article  PubMed  CAS  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  PubMed  CAS  Google Scholar 

  • Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302

    Article  PubMed  CAS  Google Scholar 

  • Khoury SJ, Healy BC, Kivisäkk P, Viglietta V, Egorova S, Guttmann CR, Wedgwood JF, Hafler DA, Weiner HL, Buckle G, Cook S, Reddy S (2010) A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol 67:1055–1061

    Article  PubMed  Google Scholar 

  • Kieseier BC (2011) The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs 25:491–502

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Muthyala S, Soliven B, Wiegmann K, Wollmann R, Chelmicka-Schorr E (1994) The beta 2-adrenergic agonist terbutaline suppresses experimental allergic neuritis in Lewis rats. J Neuroimmunol 51:177–183

    Article  PubMed  CAS  Google Scholar 

  • Kira J, Harada M, Yamaguchi Y, Shida N, Goto I (1991) Hyperprolactinemia in multiple sclerosis. J Neurol Sci 102:61–66

    Article  PubMed  CAS  Google Scholar 

  • Knudsen JH, Christensen NJ, Bratholm P (1996) Lymphocyte norepinephrine and epinephrine, but not plasma catecholamines predict lymphocyte cAMP production. Life Sci 59:639–647

    Google Scholar 

  • Koch-Henriksen N, Sørensen PS (2010) The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 9:520–532

    Article  PubMed  Google Scholar 

  • Konkol RJ, Wesselmann U, Karpus WJ, Leo GL, Killen JA, Roerig DL (1990) Suppression of clinical weakness in experimental autoimmune encephalomyelitis associated with weight changes, and post-decapitation convulsions after intracisternal-ventricular administration of 6-hydroxydopamine. J Neuroimmunol 26:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kremenchutzky M, Morrow S, Rush C (2007) The safety and efficacy of IFN-beta products for the treatment of multiple sclerosis. Expert Opin Drug Saf 6:279–288

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Ransohoff RM (2004) The CD4-Th1 model for multiple sclerosis: a crucial re-appraisal. Trends Immunol 25:132–137

    Article  PubMed  CAS  Google Scholar 

  • Lechin F, van der Dijs B, Lechin A, Orozco B, Lechin M, Báez S, Rada I, León G, Acosta E (1994) Plasma neurotransmitters and cortisol in chronic illness: role of stress. J Med 25:181–192

    PubMed  CAS  Google Scholar 

  • Levite M (2012) Dopamine in the immune system: dopamine receptors in immune cells, potent effects, endogenous production and involvement in immune and neuropsychiatric diseases. In: Levite M (ed) Nerve-driven-immunity – Neurotransmitters and neuropeptides in the immune system. Springer-Verlag, Wien, pp 1–45, 2012

    Chapter  Google Scholar 

  • Levite M, Chowers Y, Ganor Y, Besser M, Hershkovits R, Cahalon L (2001) Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates β-integrin function. Eur J Immunol 31:3504–3512

    Article  PubMed  CAS  Google Scholar 

  • Macchi B, Matteucci C, Nocentini U, Caltagirone C, Mastino A (1999) Impaired apoptosis in mitogen stimulated lymphocytes of patients with multiple sclerosis. NeuroReport 10:399–402

    Article  PubMed  CAS  Google Scholar 

  • Makhlouf K, Weiner HL, Khoury SJ (2002) Potential of beta2-adrenoceptor agonists as add-on therapy for multiple sclerosis: focus on salbutamol (albuterol). CNS Drugs 16:1–8

    Article  PubMed  CAS  Google Scholar 

  • Marazziti D, Catena Dell’osso M, Baroni S, Masala I, Dell’Osso B, Consoli G, Giannaccini G, Betti L, Lucacchini A (2010) Alterations of the dopamine transporter in resting lymphocytes of patients with different psychotic disorders. Psychiatry Res 175:54–57

  • Marino F, Cosentino M (2011) Adrenergic modulation of immune cells: an update. Amino Acids. 2011 Dec 8. [Epub ahead of print] PMID: 22160285

  • Marino F, Cosentino M, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp Hematol 27:489–495

    Article  PubMed  CAS  Google Scholar 

  • Markianos M, Sfagos C, Bistolaki E (1991) Platelet monoamine oxidase and plasma dopamine-beta-hydroxylase activities in patients with multiple sclerosis. Acta Neurol Scand 84:531–533

    Article  PubMed  CAS  Google Scholar 

  • Markowitz CE (2007) Interferon-beta: mechanism of action and dosing issues. Neurology 68:S8–S11

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF (2001) Upregulation of lymphocyte apoptosis as a strategy for preventing and treating autoimmune disorders: a role for whole-food vegan diets, fish oil and dopamine agonists. Med Hypotheses 57:258–275

    Article  PubMed  CAS  Google Scholar 

  • Merkelbach S, Haensch CA, Hemmer B, Koehler J, König NH, Ziemssen T (2006) Multiple sclerosis and the autonomic nervous system. J Neurol 253(Suppl 1):I21–I25

    Article  PubMed  Google Scholar 

  • Miller AE, Rhoades RW (2012) Treatment of relapsing-remitting multiple sclerosis: current approaches and unmet needs. Curr Opin Neurol 25:S4–S10

    Article  PubMed  CAS  Google Scholar 

  • Miyara M, Sakaguchi S (2011) Human FoxP3 + CD4+ regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89:346–351

    Article  PubMed  CAS  Google Scholar 

  • Muller BD, Bell C (1986) Vesicular storage of 3,4-dihydroxyphenylethylamine and noradrenaline in terminal sympathetic nerves of dog spleen and kidney. J Neurochem 47:1370–1375

    Article  PubMed  CAS  Google Scholar 

  • Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81:3553–3557

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373:286–291

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752

    Article  PubMed  CAS  Google Scholar 

  • Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 21:736–745

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 24:131–138

    Article  PubMed  CAS  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  • Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122:1180–1188

    Article  PubMed  CAS  Google Scholar 

  • Orbach H, Shoenfeld Y (2007) Hyperprolactinemia and autoimmune diseases. Autoimmun Rev 6:537–542

    Article  PubMed  CAS  Google Scholar 

  • Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216:8–19

    Article  PubMed  CAS  Google Scholar 

  • Pender MP (1998) Genetically determined failure of activation induced apoptosis of autoreactive T cells as a cause of multiple sclerosis. Lancet 351:978–981

    PubMed  CAS  Google Scholar 

  • Perez D, Hébert T, Cotecchia S, Doze VA, Graham RM, Altosaar K, Devost D, Gora S, Goupil E, Kan S, Machkalyan G, Sleno R, Zylbergold P, Bond RA, Bylund DB, Eikenburg DC, Hieble JP, Hills R, Minneman KP, Parra S (2012) Adrenoceptors. Last modified on 17/02/2012. Accessed on 02/08/2012. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=4

  • Pucci E, Branãs P, D'Amico R, Giuliani G, Solari A, Taus C (2007) Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst Rev Jan 24;(1):CD002818

    Google Scholar 

  • Rajda C, Bencsik K, Vécsei LL, Bergquist J (2002) Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol 124:93–100

    Article  PubMed  CAS  Google Scholar 

  • Reguzzoni M, Cosentino M, Rasini E, Marino F, Ferrari M, Bombelli R, Congiu T, Protasoni M, Quacci D, Lecchini S, Raspanti M, Frigo G (2002) Ultrastructural localization of tyrosine hydroxylase in human peripheral blood mononuclear cells:effect of stimulation with phytohaemagglutinin. Cell Tissue Res 310:297–304

    Article  PubMed  CAS  Google Scholar 

  • Riskind PN, Massacesi L, Doolittle TH, Hauser SL (1991) The role of prolactin in autoimmune demyelination: suppression of experimental allergic encephalomyelitis by bromocriptine. Ann Neurol 29:542–547

    Article  PubMed  CAS  Google Scholar 

  • Rudick RA, Goelz SE (2011) Beta-interferon for multiple sclerosis. Exp Cell Res 317:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Saha B, Mondal AC, Basu S, Dasgupta PS (2001) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  PubMed  CAS  Google Scholar 

  • Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528

    Article  PubMed  CAS  Google Scholar 

  • Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, Ebers GC (2010) The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain 133:1914–1929

    Article  PubMed  Google Scholar 

  • Simonini MV, Polak PE, Sharp A, McGuire S, Galea E, Feinstein DL (2010) Increasing CNS noradrenaline reduces EAE severity. J Neuroimmune Pharmacol 5:252–259

    Article  PubMed  Google Scholar 

  • Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol 166:232–240

    PubMed  CAS  Google Scholar 

  • Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  PubMed  CAS  Google Scholar 

  • Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16:58–68

    Article  PubMed  CAS  Google Scholar 

  • Voskuhl RR, Gold SM (2012) Sex-related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol 8:255–263

    Article  PubMed  CAS  Google Scholar 

  • Wesselmann U, Konkol RJ, Leo GL, Roerig DL, Harder DR (1987) Altered splenic catecholamine concentrations during experimental allergic encephalomyelitis. Pharmacol Biochem Behav 26:851–854

    Article  PubMed  CAS  Google Scholar 

  • White SR, Bhatnagar RK, Bardo MT (1983) Norepinephrine depletion in the spinal cord gray matter of rats with experimental allergic encephalomyelitis. J Neurochem 40:1771–1773

    Article  PubMed  CAS  Google Scholar 

  • Wiegmann K, Muthyala S, Kim DH, Arnason BG, Chelmicka-Schorr E (1995) Beta-adrenergic agonists suppress chronic/relapsing experimental allergic encephalomyelitis (CREAE) in Lewis rats. J Neuroimmunol 56:201–206

    Article  PubMed  CAS  Google Scholar 

  • Yong VW, Marks S (2010) The interplay between the immune and central nervous systems in neuronal injury. Neurology 74:S9–S16

    Article  PubMed  CAS  Google Scholar 

  • Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321

    Article  PubMed  CAS  Google Scholar 

  • Zeinstra E, Wilczak N, De Keyser J (2000) [3 H]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain. Neurosci Lett 289:75–77

    Article  PubMed  CAS  Google Scholar 

  • Zoukos Y, Leonard JP, Thomaides T, Thompson AJ, Cuzner ML (1992) Beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol 31:657–662

    Article  PubMed  CAS  Google Scholar 

  • Zoukos Y, Kidd D, Woodroofe MN, Kendall BE, Thompson AJ, Cuzner ML (1994) Increased expression of high affinity IL-2 receptors and beta-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain 117(Pt 2):307–315

    Article  PubMed  Google Scholar 

  • Zoukos Y, Thomaides TN, Kidd D, Cuzner ML, Thompson A (2003) Expression of beta2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: a longitudinal six month study. J Neurol Neurosurg Psychiatry 74:197–202

    Article  PubMed  CAS  Google Scholar 

  • Zozulya AL, Wiendl H (2008) The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 4:384–398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Authors gratefully acknowledge the support provided by the Italian Foundation for Multiple Sclerosis (FISM, Projects #2002/R/18 and #2003/R/67) and by the United States of America National Multiple Sclerosis Society (NMSS, Pilot Projects PP0791 and PP1255), which contributed to the development of some of the ideas and of the experimental research reviewed in the text.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cosentino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosentino, M., Marino, F. Adrenergic and Dopaminergic Modulation of Immunity in Multiple Sclerosis: Teaching Old Drugs New Tricks?. J Neuroimmune Pharmacol 8, 163–179 (2013). https://doi.org/10.1007/s11481-012-9410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9410-z

Keywords

Navigation