Skip to main content
Log in

Plasmon-Coupled Nanostructures Comprising Finite Number of Gold Particles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report a simple method for preparation of plasmonic nanostructures containing two, three, four, and five closely spaced 15-nm gold particles. The structures were separated from each other and purified to greater than 90 % by electrophoresis. The plasmon absorption spectra of the structures are redshifted with respect to the spectrum of gold nanoparticles not connected to each other. The magnitude of the redshift is directly proportional to the number of nanoparticles in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  2. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  3. Leuvering JHW, Goverde BC, Thal PJHM, Schuurs AHWM (1983) A homogeneous sol particle immunoassay for human chorionic gonadotrophin using monoclonal antibodies. J Immunol Methods 60:9–23

    Article  CAS  Google Scholar 

  4. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  5. Sujit Kumar Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  Google Scholar 

  6. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35

    Article  CAS  Google Scholar 

  7. Zanchet D, Micheel CM, Parak WJ, Gerion D, Williams SC, Alivisatos AP (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Phys Chem B 106:11758–11763

    Article  CAS  Google Scholar 

  8. Claridge SA, Liang HW, Basu SR, Fréchet JMJ, Alivisatos AP (2008) Isolation of discrete nanoparticle—DNA conjugates for plasmonic applications. Nano Lett 8:1202–1206

    Article  CAS  Google Scholar 

  9. Sheikholeslami S, Jun Y-W, Jain PK (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660

    Article  CAS  Google Scholar 

  10. Lubitz I, Kotlyar A (2011) G4-DNA-coated gold nanoparticles: synthesis and assembly. Bioconjug Chem 22:2043–2047

    Article  CAS  Google Scholar 

  11. Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J Am Chem Soc 122(16):3979–3980. doi:10.1021/ja000477a

    Article  CAS  Google Scholar 

  12. Wang Y, Chen G, Yang M, Silber G, Xing S, Tan LH, Wang F, Feng Y, Liu X, Li S, Chen H (2010) A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat Commun 1:87–94

    CAS  Google Scholar 

  13. Chen G, Wang Y, Tan LH, Yang M, Tan LS, Chen Y, Chen H (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131:4218–4219

    Article  CAS  Google Scholar 

  14. Bidault S, Polman (2012) Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers. International J of Optics ID 387274, 5p. doi:10.1155/2012/387274

  15. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García de Abajo F (2008) Modelling the optical response of gold nanoparticles. J Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  16. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  17. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham AG (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation, 172/10.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kotlyar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC .99 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halamish, S., Eidelshtein, G. & Kotlyar, A. Plasmon-Coupled Nanostructures Comprising Finite Number of Gold Particles. Plasmonics 8, 745–748 (2013). https://doi.org/10.1007/s11468-012-9466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9466-x

Keywords

Navigation