Skip to main content
Log in

Remote Excitation Polarization-Dependent Surface Photochemical Reaction by Plasmonic Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

For the first time, we report remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Remote excitation polarization-dependent surface-enhanced Raman scattering (SERS) spectra indicate a surface photochemical reaction that p-aminothiophenol is converted to p,p′-dimercaptoazobenzene (DMAB) induced by the plasmonic waveguide. Surface plasmon polaritons generated at the end of a silver nanowire can propagate efficiently along the nanowire, and be coupled by nanoparticles near the nanowire as a nanoantenna. Massive electromagnetic enhancement is generated in the nanogap between the nanowire and the nanoparticles. The remote excitation polarization-dependent SERS spectra can be obtained experimentally in the nanogaps; furthermore, the remote excitation polarization-dependent SERS spectra of DMAB reveal the occurrence of this surface catalytic reaction. Theoretical simulations using finite-difference time-domain methods strongly support our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Metiu H, Dos P (1984) Annu Rev Phys Chem 35:507

    Article  CAS  Google Scholar 

  2. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  3. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957

    Article  CAS  Google Scholar 

  4. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Nature 464:392

    Article  CAS  Google Scholar 

  5. Steidtner J, Pettinger B (2008) Phys Rev Lett 100:236101

    Article  Google Scholar 

  6. Mestl G, Srinivasan TKK (1998) Catalysis Reviews, Science and Engineering 40:451

    Article  CAS  Google Scholar 

  7. Mestl G (2000) J Mol Catal Chem 158:45

    Article  CAS  Google Scholar 

  8. Knozinger H, Mestl G (1999) Top Catal 8:45

    Article  CAS  Google Scholar 

  9. Lombardi JR, Birke RL (2008) J Phys Chem C 112:5605

    Article  CAS  Google Scholar 

  10. Sun MT, Liu SS, Chen MD, Xu HX (2009) J Raman Spectrosc 40:137

    Article  CAS  Google Scholar 

  11. Zhao LL, Jensen L, Schatz GC (2006) J Am Chem Soc 128:2911

    Article  CAS  Google Scholar 

  12. Otto A, Mrozek I, Grabhorn H, Akeman W (1992) J Phys Condens Matter 4:1143

    Article  CAS  Google Scholar 

  13. Osawa M, Matsuda N, Yoshii K, Uchida I (1994) J Phys Chem 98:12702

    Article  CAS  Google Scholar 

  14. Gibson JW, Johnson BR (2006) J Chem Phys 124:064701

    Article  Google Scholar 

  15. Zhou Q, Li XW, Fan Q, Zhang XX, Zheng JW (2006) Angew Chem Int Ed 45:3970

    Article  CAS  Google Scholar 

  16. Toderas F, Baia M, Baia L, Astilean S (2007) Nanotechnology 18:255702

    Article  Google Scholar 

  17. Fang YR, Li YZ, Xu HX, Sun MT (2010) Langmuir 26:7737

    Article  CAS  Google Scholar 

  18. Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ (2010) J Am Chem Soc 132:9244

    Article  CAS  Google Scholar 

  19. Huang Y, Fang Y, Yang Z, Sun MT (2010) J Phys Chem C 114:18263

    Article  CAS  Google Scholar 

  20. Canpean V, Iosin M, Astilean S (2010) Chem Phys Lett 500:277

    Article  CAS  Google Scholar 

  21. Wu DY, Zhao LB, Liu, XM Huang R, Huang YF, Ren B, Tian ZQ (2011) Chem Comm 47:2520

  22. Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX (2010) Nano Lett 10:1950

    Article  CAS  Google Scholar 

  23. Dickson RM, Lyon LA (2000) J Phys Chem B 104:6095

    Article  CAS  Google Scholar 

  24. Hutchison JA, Centeno SP, Odaka H, Fukumura H, Hofkens J, Uji-i H (2009) Nano Lett 9:995

    Article  CAS  Google Scholar 

  25. Huang Y, Fang Y, Sun MT (2011) J Phys Chem C 115:3558

    Article  CAS  Google Scholar 

  26. Sun Y, Xia YN (2002) Adv Mater 14:833

    Article  CAS  Google Scholar 

  27. Kunz KS, Luebber RJ (1993) The finite difference time domain method for electromagnetic. CRC, Cleveland

    Google Scholar 

  28. FDTD solutions, version 7.5; Lumerical Solutions, Inc. Vancounver, British Columbia, Canada, 2009.

  29. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 90923003, 10874234, 20703064, and 10904171). We thank Dr. Steven L. Suib for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengtao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Hou, Y., Li, Z. et al. Remote Excitation Polarization-Dependent Surface Photochemical Reaction by Plasmonic Waveguide. Plasmonics 6, 681–687 (2011). https://doi.org/10.1007/s11468-011-9251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9251-2

Keywords

Navigation