Skip to main content

Advertisement

Log in

Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Currently, no methods exist for the definitive diagnosis of AD premortem. β-amyloid, the primary component of the senile plaques found in patients with this disease, is believed to play a role in its neurotoxicity. We are developing a nanoshell substrate, functionalized with sialic acid residues to mimic neuron cell surfaces, for the surface-enhanced Raman detection of β-amyloid. It is our hope that this sensing mechanism will be able to detect the toxic form of β-amyloid, with structural and concentration information, to aid in the diagnosis of AD and provide insight into the relationship between β-amyloid and disease progression. We have been successfully able to functionalize the nanoshells with the sialic acid residues to allow for the specific binding of β-amyloid to the substrate. We have also shown that a surface-enhanced Raman spectroscopy response using nanoshells is stable and concentration-dependent with detection into the picomolar range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang YQ, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117

    Article  Google Scholar 

  2. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population-prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122

    Article  Google Scholar 

  3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  Google Scholar 

  4. Minino AM, Heron MP, Smith BL (2006) Deaths: preliminary data for 2004. Natl Vital Stat Rep 54(19):1–50

    Google Scholar 

  5. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  Google Scholar 

  6. Ernst RL, Hay JW (1994) The U.S. economic and social costs of Alzheimer’s disease revisited. Am J Public Health 84(8):1261–1264

    CAS  Google Scholar 

  7. Ariga T, Kobayashi K, Hasegawa A, Kiso M, Ishida H, Miyatake T (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch Biochem Biophys 388(2):225–230

    Article  CAS  Google Scholar 

  8. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang JP, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    Article  CAS  Google Scholar 

  9. Bergamaschini L, Rossi E, Storini C, Pizzimenti S, Distaso M, Perego C, De Luigi A, Vergani C, De Simoni MG (2004) Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer’s disease. J Neurosci 24(17):4181–4186

    Article  CAS  Google Scholar 

  10. Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM (2004) Efficient reversal of Alzheimer’s disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci USA 101(40):14326–14332

    Article  CAS  Google Scholar 

  11. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98(15):8850–8855

    Article  CAS  Google Scholar 

  12. Etcheberrigaray R, Tan M, Dewachter I, Kuiperi C, Van der Auwera I, Wera S, Qiao LX, Bank B, Nelson TJ, Kozikowski AP, Van Leuven F, Alkon DL (2004) Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci USA 101(30):11141–11146

    Article  CAS  Google Scholar 

  13. Gelinas DS, DaSilva K, Fenili D, George-Hyslop PS, McLaurin J (2004) Immunotherapy for Alzheimer’s disease. Proc Natl Acad Sci USA 101:14657–14662

    Article  CAS  Google Scholar 

  14. Ghanta J, Shen CL, Kiessling LL, Murphy RM (1996) A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem 271(47):29525–29528

    Article  CAS  Google Scholar 

  15. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJF, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38(4):547–554

    Article  CAS  Google Scholar 

  16. Mandavilli A (2006) The amyloid code. Nat Med 12(7):747–751

    Article  CAS  Google Scholar 

  17. Mount C, Downton C (2006) Alzheimer disease: progress or profit? Nat Med 12(7):780–784

    Article  CAS  Google Scholar 

  18. Patel D, Henry J, Good T (2006) Attenuation of beta-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim Biophys Acta 1760(12):1802–1809

    CAS  Google Scholar 

  19. Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88(9):1337–1342

    Article  CAS  Google Scholar 

  20. Davis PC, Gray L, Albert M, Wilkinson W, Hughes J, Heyman A, Gado M, Kumar AJ, Destian S, Lee C, Duvall E, Kido D, Nelson MJ, Bello J, Weathers S, Jolesz F, Kikinis R, Brooks M (1992) The consortium to establish a registry for Alzheimers-disease (Cerad) .3. Reliability of a standardized Mri evaluation of Alzheimers-disease. Neurology 42(9):1676–1680

    CAS  Google Scholar 

  21. Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimers-disease. Neurology 36(7):879–887

    CAS  Google Scholar 

  22. Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede non-memory cognitive defects in early Alzheimers-type dementia. Arch Neurol 43(9):882–885

    CAS  Google Scholar 

  23. Blennow K (2004) CSF biomarkers for mild cognitive impairment. J Intern Med 256:224–234

    Article  CAS  Google Scholar 

  24. Mattson MP, Mark RJ, Furukawa K, Bruce AJ (1997) Disruption of brain cell ion homeostasis in Alzheimer’s disease by oxy radicals, and signaling pathways that protect therefrom. Chem Res Toxicol 10(5):507–517

    Article  CAS  Google Scholar 

  25. Rapport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99:6364–6369

    Article  CAS  Google Scholar 

  26. Small GW (2002) Brain-imaging surrogate markers for detection and prevention of age-related memory loss. J Mol Neurosci 19(1–2):17–21

    Article  CAS  Google Scholar 

  27. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  CAS  Google Scholar 

  28. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557

    Article  CAS  Google Scholar 

  29. Wang SSS, Rymer DL, Good TA (2001) Reduction in cholesterol and sialic acid content protects cells from the toxic effects of beta-amyloid peptides. J Biol Chem 276(45):42027–42034

    Article  CAS  Google Scholar 

  30. Zetterberg H, Wahnlund L-O, Blennow K (2003) Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci Lett 352:67–69

    Article  CAS  Google Scholar 

  31. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-protein specifically disrupt cognitive function. Nat Neurosci 8(1):79–84

    Article  CAS  Google Scholar 

  32. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100(18):10417–10422

    Article  CAS  Google Scholar 

  33. Hardy J, Selkoe DJ (2002) Medicine—the amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  Google Scholar 

  34. Lee S, Fernandez EJ, Good TA (2007) Role of aggregation conditions in structure, stability, and toxicity of intermediates in the Aβ fibril formation pathway. Protein Sci 16(4):723–732

    Article  CAS  Google Scholar 

  35. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91(25):12243–12247

    Article  CAS  Google Scholar 

  36. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584

    Article  CAS  Google Scholar 

  37. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271

    Article  CAS  Google Scholar 

  38. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4(6):1029–1034

    Article  CAS  Google Scholar 

  39. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102(7):2273–2276

    Article  CAS  Google Scholar 

  40. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  41. Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76(14):2444–2447

    Article  CAS  Google Scholar 

  42. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  43. Fleischmann M, Hendra PJ, McQuillan AJ (1973) Raman-spectra from electrode surfaces. J Chem Soc Chem Commun (3):80–81

  44. Jeanmaire DL, Vanduyne RP (1977) Surface raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84(1):1–20

    Article  CAS  Google Scholar 

  45. Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770

    Article  CAS  Google Scholar 

  46. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14(18):R597–R624

    Article  CAS  Google Scholar 

  47. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899

    Article  CAS  Google Scholar 

  48. Jackson JB, Halas NJ (2003) Controlling the surface enhanced Raman effect on nanoshells in a film geometry. Abstr Pap Am Chem Soc 225:U447

    Google Scholar 

  49. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101(52):17930–17935

    Article  CAS  Google Scholar 

  50. Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111(10):4729–4735

    Article  CAS  Google Scholar 

  51. Zhu ZH, Zhu T, Liu ZF (2004) Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 15(3):357–364

    Article  CAS  Google Scholar 

  52. Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22)

  53. ChooSmith LP, GarzonRodriguez W, Glabe CG, Surewicz WK (1997) Acceleration of amyloid fibril formation by specific binding of A beta-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272(37):22987–22990

    Article  CAS  Google Scholar 

  54. Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276(27):24985–24990

    Article  CAS  Google Scholar 

  55. Kakio A, Yano Y, Takai D, Kuroda Y, Matsumoto O, Kozutsumi Y, Matsuzaki K (2004) Interaction between amyloid beta-protein aggregates and membranes. J Pept Sci 10(10):612–621

    Article  CAS  Google Scholar 

  56. Matsuzaki K, Horikiri C (1999) Interactions of amyloid beta-peptide (1–40) with ganglioside-containing membranes. Biochemistry 38(13):4137–4142

    Article  CAS  Google Scholar 

  57. Wakabayashi M, Okada T, Kozutsumi Y, Matsuzaki K (2005) GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochem Biophys Res Commun 328(4):1019–1023

    Article  CAS  Google Scholar 

  58. Williamson MP, Suzuki Y, Bourne NT, Asakura T (2006) Binding of amyloid beta-peptide to ganglioside micelles is dependent on histidine-13. Biochem J 397:483–490

    Article  CAS  Google Scholar 

  59. Iconomidou VA, Chryssikos GD, Gionis V, Hoenger A, Hamodrakas SJ (2003) FT-Raman spectroscopy as diagnostic tool of Congo red binding to amyloids. Biopolymers 72(3):185–192

    Article  CAS  Google Scholar 

  60. Miura T, Yamamiya C, Sasaki M, Suzuki K, Takeuchi H (2002) Binding mode of Congo red to Alzheimer’s amyloid beta-peptide studied by UV Raman spectroscopy. J Raman Spectrosc 33(7):530–535

    Article  CAS  Google Scholar 

  61. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276(25):22715–22721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Institutes of Health (grant no. STTR-1R41AG025586-01 and grant no. R21-NS050346-01). The authors acknowledge the support of the Air Force (STTR FA9550-05-C-0019). Hope Beier acknowledges the support of a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hope T. Beier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beier, H.T., Cowan, C.B., Chou, IH. et al. Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells. Plasmonics 2, 55–64 (2007). https://doi.org/10.1007/s11468-007-9027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-007-9027-x

Keywords

Navigation