Skip to main content
Log in

MgO(001) barrier based magnetic tunnel junctions and their device applications

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Spintronics has received a great attention and significant interest within the past decades, and provided considerable and remarked applications in industry and electronic information etc. In spintronics, the MgO based magnetic tunnel junction (MTJ) is an important research advancement because of its physical properties and excellent performance, such as the high TMR ratio in MgO based MTJs. We present an overview of more than a decade development in MgO based MTJs. The review contains three main sections. (1) Research of several types of MgO based MTJs, including single-crystal MgO barrier based-MTJs, double barrier MTJs, MgO based MTJs with interlayer, novel electrode material MTJs based on MgO, novel barrier based MTJs, novel barrier MTJs based on MgO, and perpendicular MTJs. (2) Some typical physical effects in MgO based MTJs, which include six observed physical effects in MgO based MTJs, namely spin transfer torque (STT) effect, Coulomb blockade magnetoresistance (CBMR) effect, oscillatory magnetoresistance, quantum-well resonance tunneling effect, electric field assisted magnetization switching effect, and spincaloric effect. (3) In the last section, a brief introduction of some important device applications of MgO based MTJs, such as GMR & TMR read heads and magneto-sensitive sensors, both field and current switching MRAM, spin nano oscillators, and spin logic devices, have been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Julliere M. Tunneling between ferromagnetic films. Phys Lett A, 1975, 54: 225–226

    Article  ADS  Google Scholar 

  2. Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61: 2472–2475

    Article  ADS  Google Scholar 

  3. Binasch G, Grunberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39: 4828–4830

    Article  ADS  Google Scholar 

  4. Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater, 1995, 139: L231–L234

    ADS  Google Scholar 

  5. Moodera J S, Kinder L R, Wong T M, et al. Large magnetoresistance at RT in ferromagnetic thin film tunnel junctions. Phys Rev Lett, 1995, 74: 3273–3276

    Article  ADS  Google Scholar 

  6. Han X F, Oogane M, Kubota H, et al. Fabrication of high-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes. Appl Phys Lett, 2000, 77: 283–285

    Article  ADS  Google Scholar 

  7. Han X F, Miyazaki T. Effects of annealing on high-magnetoresistance tunnel junctions with Co75Fe25 ferromagnetic electrodes. J Mater Sci Technol, 2000, 16: 549–553

    Google Scholar 

  8. Wei H X, Qin Q H, Ma M, et al. 80% tunneling magnetoresistance at RT for thin Al-O barrier magnetic tunnel junction with CoFeB as free and reference layers. J Appl Phys, 2007, 101: 09B501

    Article  Google Scholar 

  9. Yuasa S, Djayaprawira D D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. J Phys D-Appl Phys, 2007, 40: R337

    Article  ADS  Google Scholar 

  10. Butler W, Zhang X G, Schulthess T C, et al. Spin-dependent tunneling conductance of FeMgOFe sandwiches. Phys Rev B, 2011, 63: 054416

    Article  ADS  Google Scholar 

  11. Mathon J, Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys Rev B, 2001, 63: 220403 (R)

    Article  ADS  Google Scholar 

  12. Parkin S S P, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at RT with MgO(100) tunnel barriers. Nat Mater, 2004, 3: 862–867

    Article  ADS  Google Scholar 

  13. Yuasa S, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater, 2004, 3: 868–871

    Article  ADS  Google Scholar 

  14. Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett, 2008, 93: 082508

    Article  ADS  Google Scholar 

  15. Du G X, Wang S G, Ma Q L, et al. Spin-dependent tunneling spectroscopy for interface characterization of epitaxial Fe/MgO/Fe MTJs. Phys Rev B, 2010, 81: 064438

    Article  ADS  Google Scholar 

  16. Feng J F, Chen J Y, Venkatesan M, et al. Superparamagnetism in MgO-based MTJs with a thin pinned ferromagnetic electrode. Phys Rev B, 2010, 81: 205212

    Article  ADS  Google Scholar 

  17. Heinonen O G, Singleton E W, Karr B W, et al. Review of the physics of magnetoresistive readers. IEEE Trans Magn, 2008, 44: 2465–2471

    Article  ADS  Google Scholar 

  18. Slaughter J M. Materials for magnetoresistive random access memory. Ann Rev Mater Res, 2009, 39: 277–296

    Article  ADS  Google Scholar 

  19. Hayakawa J, Ikeda S, Lee Y M, et al. Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeB/MgO/CoFeB magnetic tunnel junctions. App Phys Lett, 2006, 89: 232510

    Article  ADS  Google Scholar 

  20. Djayaprawira D D, Tsunekawa K, Nagai M, et al. 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett, 2005, 86: 092502

    Article  ADS  Google Scholar 

  21. Lee Y M, Hayakawa J, Ikeda S, et al. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl Phys Lett, 2007, 90: 212507

    Article  ADS  Google Scholar 

  22. Yan W. Spin-dependent Transport Theory and First-principles Calculation of MgO-based Magnetic Tunnel Junctions. Dissertation for the Doctoral Degree. Beijing: Institute of Physics, Chinese Academy of Sciences, 2009

    Google Scholar 

  23. Yuasa S. Giant tunneling magnetoresistance in MgO-based magnetic tunnel junctions. J Phys Soc Jap, 2008, 77: 031001

    Article  ADS  Google Scholar 

  24. Mathon J, Umerski A. Theory of resonant tunneling in an epitaxial Fe/Au/MgO/Au/Fe(001) junction. Phys Rev B, 2005, 71: 220402 (R)

    Article  ADS  Google Scholar 

  25. Yavorsky B Y, Mertig I. Noncollinear interface magnetism and ballistic transport in Fe/FeO/MgO/Fe tunnel junctions: Ab initio calculations using the KKR method. Phys Rev B, 2006, 74: 174402

    Article  ADS  Google Scholar 

  26. Miura Y, Uchida H, Oba Y, et al. Half-metallic interface and coherent tunneling in Co2YZ/MgO/Co2YZ (YZ=MnSi,CrAl) magnetic tunnel junctions: A first-principles study. Phys Rev B, 2008, 78: 064416

    Article  ADS  Google Scholar 

  27. Bose P, Ernst A, Mertig I, et al. Large reduction of the magnetoresistance in Fe/MgO/Fe tunnel junctions because of small oxygen concentrations at a single FeO interface layer: A first-principles study. Phys Rev B, 2008, 78: 092403

    Article  ADS  Google Scholar 

  28. Nozaki T, Tezuka N, Inomata K. Quantum oscillation of the tunneling conductance in fully epitaxial double barrier magnetic tunnel junctions. Phys Rev Lett, 2006, 96: 027208

    Article  ADS  Google Scholar 

  29. Wang Y, Lu Z Y, Zhang X G, et al. First-principles theory of quantum well resonance in double barrier magnetic tunnel junctions. Phys Rev Lett, 2006, 97: 087210

    Article  ADS  Google Scholar 

  30. Wang Y, Han X F, Zhang X G. Effect of Co interlayers in Fe/MgO/Fe magnetic tunnel junctions. Appl Phys Lett, 2008, 93: 172501

    Article  ADS  Google Scholar 

  31. Zhang J, Wang Y, Zhang X G, et al. Inverse and oscillatory magnetoresistance in Fe(001)/MgO/Cr/Fe magnetic tunnel junctions. Phys Rev B, 2010, 82: 134449

    Article  ADS  Google Scholar 

  32. Wang Y, Zhang J, Zhang X G, et al. First-principles study of Fe/MgO based magnetic tunnel junctions with Mg interlayers. Phys Rev B, 2010, 82: 054405

    Article  ADS  Google Scholar 

  33. Yuasa S, Fukushima A, Nagahama T, et al. High tunnel magnetoresistance at RT in fully epitaxial Fe/MgO/Fe tunnel junctions because of coherent spin-polarized tunneling. J Appl Phys, 2004, 43: L588–L590

    ADS  Google Scholar 

  34. Yu G Q, Feng J F, Kurt H, et al. Field sensing in MgO double barrier MTJs with a superparamagnetic Co50Fe50 free layer. J Appl Phys, 2012, 111: 113906

    Article  ADS  Google Scholar 

  35. Zeng Z M, Han X F, Zhan W S, et al. Oscillatory tunnel magnetoresistance in double barrier magnetic tunnel junctions. Phys Rev B, 2005, 72: 054419

    Article  ADS  Google Scholar 

  36. Yakushiji K, Mitani S, Takanashi K, et al. Tunnel magnetoresistance oscillations in current perpendicular to plane geometry of CoAlO granular thin films. J Appl Phys, 2002, 91: 7038–7040

    Article  ADS  Google Scholar 

  37. Yuasa S, Nagahama T, Suzuki Y. Spin-polarized resonant tunneling in magnetic tunnel junctions. Science, 2002, 297: 234–237

    Article  ADS  Google Scholar 

  38. Niizeki T, Tezuka N, Inomata K. Enhanced tunnel magnetoresistance because of spin dependent quantum well resonance in specific symmetry states of an ultrathin ferromagnetic electrode. Phys Rev Lett, 2008, 100: 047207

    Article  ADS  Google Scholar 

  39. Nozaki T, Hirohata A, Tezuka N, et al. Bias voltage effect on tunnel magnetoresistance in fully epitaxial MgO double-barrier magnetic tunnel junctions. Appl Phys Lett, 2005, 86: 082501

    Article  ADS  Google Scholar 

  40. Gan H D, Ikeda S, Shiga W, et al. Tunnel magnetoresistance properties and film structures of double MgO barrier magnetic tunnel junctions. Appl Phys Lett, 2010, 96: 192507

    Article  ADS  Google Scholar 

  41. Heiliger C, Zahn P, Mertig I. Microscopic origin of magnetoresistance. Mater Today, 2006, 9: 46–53

    Article  Google Scholar 

  42. Waldron D, Liu L, Guo H. Ab initio simulation of magnetic tunnel junctions. Nanotechnology, 2007, 18: 424026

    Article  ADS  Google Scholar 

  43. Ikeda S, Hayakawa J, Lee Y M, et al. Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans Electron Devices, 2007, 54: 991–1002

    Article  ADS  Google Scholar 

  44. Velev J P, Dowben P A, Tsymbal E Y, et al. Interface effects in spin-polarized metal/insulator layered structures. Surf Sci Rep, 2008, 63: 400–425

    Article  ADS  Google Scholar 

  45. Tsunekawa K, Djayaprawira D D, Nagai M, et al. Giant tunneling magnetoresistance effect in low-resistance CoFeB/MgO(001)/CoFeB magnetic tunnel junctions for read-head applications. Appl Phys Lett, 2005, 87: 072503

    Article  ADS  Google Scholar 

  46. Miao G, Chetry K B, Gupta A, et al. Inelastic tunneling spectroscopy of magnetic tunnel junctions based on CoFeB/MgO/CoFeB with Mg insertion layer. J Appl Phys, 2006, 99: 08T305

    Article  Google Scholar 

  47. Moriyama T, Ni C, Wang W G, et al. Tunneling magnetoresistance in (001)-oriented FeCo/MgO/FeCo magnetic tunneling junctions grown by sputtering deposition. Appl Phys Lett, 2006, 88: 222503

    Article  ADS  Google Scholar 

  48. Read J C, Mather P G, Buhrman R A. X-ray photoemission study of CoFeB/MgO thin film bilayers. Appl Phys Lett, 2007, 90: 132503

    Article  ADS  Google Scholar 

  49. Cha J J, Read J C, Buhrman R A, et al. Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett, 2007, 91: 062516

    Article  ADS  Google Scholar 

  50. Lu Y, Deranlot C, Vaurès A, et al. Effects of a thin Mg layer on the structural and magnetoresistance properties of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett, 2007, 91: 222504

    Article  ADS  Google Scholar 

  51. Huang J C A, Hsu C Y, Chen W H, et al. Effects of submonolayer Mg on CoFe-MgO-CoFe magnetic tunnel junctions. J Appl Phys, 2008, 104: 073909

    Article  ADS  Google Scholar 

  52. Ye L, Lee C, Syu J, et al. Effect of annealing and barrier thickness on MgO-based Co/Pt and Co/Pd multilayered perpendicular magnetic tunnel junctions. IEEE Trans Magn, 2008, 44: 3601–3604

    Article  ADS  Google Scholar 

  53. Zhang X G, Butler W H, Bandyopadhyay A. Effects of the iron-oxide layer in Fe-FeO-MgO-Fe tunneling junctions. Phys Rev B, 2003, 68: 092402

    Article  ADS  Google Scholar 

  54. Tusche C, Meyerheim H L, Jedrecy N, et al. Oxygen-induced symmetrization and structural coherency in Fe/MgO/Fe(001) magnetic tunnel junctions. Phys Rev Lett, 2005, 95: 176101.

    Article  ADS  Google Scholar 

  55. Heiliger C, Zahn P, Yavorsky B Y, et al. Influence of the interface structure on the bias dependence of tunneling magnetoresistance. Phys Rev B, 2005, 72: 180406 (R)

    Article  ADS  Google Scholar 

  56. Waldron D, Timoshevskii V, Hu Y, et al. First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers. Phys Rev Lett, 2006, 97: 226802

    Article  ADS  Google Scholar 

  57. Heiliger C, Zahn P, Mertig I. Influence of interface oxidation on the TMR ratio of Fe/MgO/Fe tunnel junctions. J Magn Magn Mater, 2007, 316: 478–480

    Article  ADS  Google Scholar 

  58. Matsumoto R, Fukushima A, Yakushiji K, et al. Spin-dependent tunneling in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions with an ultrathin Cr(001) spacer layer. Phys Rev B, 2009, 79: 174436

    Article  ADS  Google Scholar 

  59. Žutić I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323–410

    Article  ADS  Google Scholar 

  60. de Groot R A, Mueller F M, van Engen P G, et al. New class of materials: Half-metallic ferromagnets. Phys Rev Lett, 1983, 50: 2024–2027

    Article  ADS  Google Scholar 

  61. Felser C, Fecher G H, Balke B. Spintronics: A challenge for material science and solid-state chemistry. Angew Chem-Int Edit, 2007, 46: 668–699

    Article  Google Scholar 

  62. Ishida S, Fujii S, Kashiwagi S, et al. Search for half-metallic compounds in Co2MnZ (Z=IIIb, IVb, Vb Element). J Phys Soc Jpn, 1995, 64: 2152–2157

    Article  ADS  Google Scholar 

  63. Picozzi S, Continenza A, Freeman A J. Co2MnX (X=Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys Rev B, 2002, 66: 094421

    Article  ADS  Google Scholar 

  64. Galanakis I, Dederichs P H, Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B, 2002, 66: 174429

    Article  ADS  Google Scholar 

  65. Webster P J. Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J Phys Chem Solids, 1971, 32: 1221–1231

    Article  ADS  Google Scholar 

  66. Inomata K, Okamura S, Goto R, et al. Large tunneling magnetoresistance at RT using a Heusler alloy with the B2 structure. Jpn J Appl Phys, 2003, 42: L419–L422

    Article  ADS  Google Scholar 

  67. Kämmerer S, Thomas A, Hütten A, et al. Co2MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions. Appl Phys Lett, 2004, 85: 79–81

    Article  ADS  Google Scholar 

  68. Kubota H, Nakata J, Oogane M, et al. Large magnetoresistance in magnetic tunnel junctions using Co-Mn-Al full Heusler alloy. Jpn J Appl Phys, 2004, 43: L984–L986

    Article  ADS  Google Scholar 

  69. Marukame T, Kasahara T, Matsuda K-I, et al. Fabrication of fully epitaxial magnetic tunnel junctions using full-Heusler alloy Co2Cr0.6Fe0.4Al thin film and MgO tunnel barrier. Jpn J Appl Phys, 2005, 44: L521–L524

    Article  ADS  Google Scholar 

  70. Ishikawa T, Marukame T, Kijima H, et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier. Appl Phys Lett, 2006, 89: 192505

    Article  ADS  Google Scholar 

  71. Sakuraba Y, Hattori M, Oogane M, et al. Giant tunneling magnetoresistance in Co2MnSi/Al-O/Co2MnSi magnetic tunnel junctions. Appl Phys Lett, 2006, 88: 192508

    Article  ADS  Google Scholar 

  72. Tezuka N, Ikeda N, Mitsuhashi F, et al. Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co2FeAl0.5Si0.5 electrodes fabricated by molecular beam epitaxy. Appl Phys Lett, 2009, 94: 162504

    Article  ADS  Google Scholar 

  73. Yakushiji K, Saito K, Mitani S, et al. Current-perpendicular-to-plane magnetoresistance in epitaxial Co2MnSi/Cr/Co2MnSi trilayers. Appl Phys Lett, 2006, 88: 222504

    Article  ADS  Google Scholar 

  74. Furubayashi T, Kodama K, Sukegawa H, et al. Current-perpen-dicular-to-plane giant magnetoresistance in spin-valve structures using epitaxial Co2FeAl0.5Si0.5/Ag/Co2FeAl0.5Si0.5 trilayers. Appl Phys Lett, 2008, 93: 122507

    Article  ADS  Google Scholar 

  75. Sakuraba Y, Iwase T, Saito K, et al. Enhancement of spin-asymmetry by L21-ordering in Co2MnSi/Cr/Co2MnSi current-perpendicular-to-plane magnetoresistance devices. Appl Phys Lett, 2009, 94: 012511

    Article  ADS  Google Scholar 

  76. Nikolaev K, Kolbo P, Pokhil T, et al. All-Heusler alloy current-perpendicular-to-plane giant magnetoresistance. Appl Phys Lett, 2009, 94: 222501

    Article  ADS  Google Scholar 

  77. Dong X Y, Adelmann C, Xie J Q, et al. Spin injection from the Heusler alloy Co2MnGe into Al0.1Ga0.9As/GaAs heterostructures. Appl Phys Lett, 2005, 86: 102107

    Article  ADS  Google Scholar 

  78. Hickey M C, Damsgaard C D, Farrer I, et al. Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum well. Appl Phys Lett, 2005, 86: 252106

    Article  ADS  Google Scholar 

  79. Tezuka N, Ikeda N, Sugimoto S, et al. Giant tunnel magnetoresistance at RT for junctions using full-Heusler Co2FeAl0.5Si0.5 electrodes. Jpn J Appl Phys, 2007, 46: L454–L456

    Article  ADS  Google Scholar 

  80. Tsunegi S, Sakuraba Y, Oogane M, et al. Large tunnel magnetoresistance in magnetic tunnel junctions using a Co2MnSi Heusler alloy electrode and a MgO barrier. Appl Phys Lett, 2008, 93: 112506

    Article  ADS  Google Scholar 

  81. Ikeda S, Hayakawa J, Lee Y M, et al. Dependence of tunnel magnetoresistance in MgO based magnetic tunnel junctions on Ar pressure during MgO sputtering. Jpn J Appl Phys, 2005, 44: L1442–L1445

    Article  ADS  Google Scholar 

  82. Yamamoto M, Ishikawa T, Taira T, et al. Effect of defects in Heusler alloy thin films on spin-dependent tunnelling characteristics of Co2MnSi/MgO/Co2MnSi and Co2MnGe/MgO/Co2MnGe magnetic tunnel junctions. J Phys-Condes Matter, 2010, 22: 164212

    Article  ADS  Google Scholar 

  83. Ishikawa T, Hakamata S, Matsuda K-I, et al. Fabrication of fully epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions. J Appl Phys, 2008, 103: 07A919

    Article  Google Scholar 

  84. Ishikawa T, Itabashi N, Taira T, et al. Critical role of interface states for spin-dependent tunneling in half-metallic Co2MnSi-based magnetic tunnel junctions investigated by tunneling spectroscopy. Appl Phys Lett, 2009, 94: 092503

    Article  ADS  Google Scholar 

  85. Bonell F, Andrieu S, Tiusan C, et al. Influence of misfit dislocations on the magnetoresistance of MgO-based epitaxial magnetic tunnel junctions. Phys Rev B, 2010, 82: 092405

    Article  ADS  Google Scholar 

  86. Liu D P, Han X F, Guo H. Junction resistance, tunnel magnetoresistance ratio, and spin-transfer torque in Zn-doped MTJs. Phys Rev B, 2012, 85: 245436

    Article  ADS  Google Scholar 

  87. Sukegawa H, Xiu H, Ohkubo T, et al. Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl Phys Lett, 2010, 96: 212505

    Article  ADS  Google Scholar 

  88. Shan R, Sukegawa H, Wang W, et al. Demonstration of half-metallicity in Fermi-level-tuned Heusler alloy Co2FeAl0.5Si0.5 at RT. Phys Rev Lett, 2009, 102: 246601

    Article  ADS  Google Scholar 

  89. Liu H F, Ma Q L, Rizwan S, et al. Tunnel magnetoresistance effect in CoFeB/MgAlO/CoFeB magnetic tunnel junctions. IEEE Trans Magn, 2011, 47: 2716–2719

    Article  ADS  Google Scholar 

  90. Mavropoulos P, Papanikolaou N, Dederichs P H. Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions. Phys Rev Lett, 2000, 85: 1088–1091

    Article  ADS  Google Scholar 

  91. Stewart D A. New type of magnetic tunnel junction based on spin filtering through a reduced symmetry oxide: FeCo/Mg3B2O6/FeCo. Nano Lett, 2010, 10: 263–267

    Article  ADS  Google Scholar 

  92. Zhang J, Zhang X G, Han X F. Spinel oxides: Δ1 spin-filter barrier for a class of magnetic tunnel junctions. Appl Phys Lett, 2012, 100: 222401

    Article  ADS  Google Scholar 

  93. Wei S H, Zhang S B. First-principles study of cation distribution in eighteen closed-shell AIIB2 IIIO4 and AIVB2 IIO4 spinel oxides. Phys Rev B, 2001, 63: 045112

    Article  MathSciNet  ADS  Google Scholar 

  94. Mangin S, Ravelosona D, Katine J A, et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat Mater, 2006, 5: 210–215

    Article  ADS  Google Scholar 

  95. Meng H, Wang J P. Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl Phys Lett, 2006, 88: 172506

    Article  ADS  Google Scholar 

  96. Law R, Sbiaa R, Liew T, et al. Effects of Ta seed layer and annealing on magnetoresistance in CoFe/Pd-based pseudo-spin-valves with perpendicular anisotropy. Appl Phys Lett, 2007, 91: 242504

    Article  ADS  Google Scholar 

  97. Kishi T, Yoda H, Kai T, et al. Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfertorque MRAM. In: Proceedings of IEEE International Electron Devices Meeting. San Francisco, USA, 2008. 309–312

  98. Yoshikawa M, Kitagawa E, Nagase T, et al. Tunnel magnetoresistance over 100% in MgO-based magnetic tunnel junction films with perpendicular magnetic L10-FePt electrodes. IEEE Trans Magn, 2008, 44: 2573–2576

    Article  ADS  Google Scholar 

  99. Nakayama M, Kai T, Shimomura N, et al. Spintransfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. J Appl Phys, 2008, 103: 07A710

    Article  Google Scholar 

  100. Ohmori H, Hatori T, Nakagawa S. Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO(100) barrier layer prepared at RT. J Appl Phys, 2008, 103: 07A911

    Article  Google Scholar 

  101. Kim G, Sakuraba Y, Oogane M, et al. Tunneling magnetoresistance of magnetic tunnel junctions using perpendicular magnetization L10-CoPt electrodes. Appl Phys Lett, 2008, 92: 172502

    Article  ADS  Google Scholar 

  102. Watanabe D, Mizukami S, Oogane M, et al. Fabrication of MgO-based magnetic tunnel junctions with CoCrPt perpendicularly magnetized electrodes. J Appl Phys, 2009, 105: 07C911

    Article  Google Scholar 

  103. Park J H, Ikeda S, Yamamoto H, et al. Perpendicular magnetic tunnel junctions with CoFe/Pd multilayer electrodes and an MgO barrier. IEEE Trans Magn, 2009, 45: 3476–3479

    Article  ADS  Google Scholar 

  104. Mizunuma K, Ikeda S, Park J H, et al. MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers. Appl Phys Lett, 2009, 95: 232516

    Article  ADS  Google Scholar 

  105. Miyajima T, Ibusuki T, Umehara S, et al. Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers. Appl Phys Lett, 2009, 94: 122501

    Article  ADS  Google Scholar 

  106. Karthik S V, Takahashi Y K, Ohkubo T, et al. Transmission electron microscopy investigation of CoFeB/MgO/CoFeB pseudospin valves annealed at different temperatures. J Appl Phys, 2009, 106: 023920

    Article  ADS  Google Scholar 

  107. Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater, 2010, 9: 721–724

    Article  ADS  Google Scholar 

  108. Wang W X, Yang Y, Naganuma H, et al. The perpendicular anisotropy of Co40Fe40B20 sandwiched between Ta and MgO layers and its application in CoFeB/MgO/CoFeB tunnel junction. Appl Phys Lett, 2011, 99: 012502

    Article  ADS  Google Scholar 

  109. Sato H, Yamanouchi M, Miura K, et al. Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions. Appl Phys Lett, 2011, 99: 042501

    Article  ADS  Google Scholar 

  110. Slonczewski J C. Current-driven excitation of magnetic multilayers. J Magn Magn Mater, 1996, 159: L1–L7

    Article  ADS  Google Scholar 

  111. Katine J A, Albert F J, Buhrman R A, et al. Current-driven magnetization reversal and spin-wave excita-tion in Co/Cu/Co pillars. Phys Rev Lett, 2000, 84: 3149–3152

    Article  ADS  Google Scholar 

  112. Grollier J, Cros V, Hamzic A, et al. Spin-polarized current induced switching in Co/Cu/Co pillars. Appl Phys Lett, 2001, 78: 3663–3665

    Article  ADS  Google Scholar 

  113. Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 1996, 54: 9353–9358

    Article  ADS  Google Scholar 

  114. Sun J Z, Monsma D J, Abraham D W, et al. Batch fabricated spin-injection magnetic switches. Appl Phys Lett, 2002, 81: 2202–2204

    Article  ADS  Google Scholar 

  115. Rippard W H, Pufall M R, Kaka S, et al. Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys Rev B, 2004, 70: 100406 (R)

    Article  ADS  Google Scholar 

  116. Bazaliy Y B, Jones B A, Zhang S C. Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Phys Rev B, 1998, 57: R3213–R3216

    Article  ADS  Google Scholar 

  117. Tsoi M, Jansen A G M, Bass J, et al. Excitation of a magnetic multilayer by an electric current. Phys Rev Lett, 1998, 80: 4281–4284; Tsoi M, Jansen A G M, Bass J, et al. Erratum: Excitation of a magnetic multilayer by an electric current. Phys Rev Lett, 1998, 81: 493–493

    Article  ADS  Google Scholar 

  118. Sun J Z. Current-driven magnetic switching in manganite trilayer junctions. J Magn Magn Mater, 2009, 202: 157–162

    Article  ADS  Google Scholar 

  119. Myers E B, Ralph D C, Katine J A, et al. Current-induced switching of domains in magnetic multilayer devices. Science, 1999, 285: 867–870

    Article  Google Scholar 

  120. Slaughter J M, Dave R W, Durlam M, et al. High speed toggle MRAM with MgO-based tunnel junctions. Technical Digest of IEEE International Electron Devices Meeting, Washington DC, USA, 2005. 873–876

  121. Chen E, Apalkov D, Diao Z, et al. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans Magn, 2010, 46: 1873–1878

    Article  ADS  Google Scholar 

  122. Nam K-T, Oh S C, Lee J E, et al. Switching properties in spin transper torque MRAM with sub-50 nm MTJ size. Proceedings of IEEE 7th Annual Non-Volatile Memory Technology Symposium. San Mateo: IEEE, 2006. 49–51

    Google Scholar 

  123. Fuchs G D, Katine J A, Kiselev S I, et al. Spin torque, tunnel-current spin polarization, and magnetoresistance in MgO magnetic tunnel junctions. Phys Rev Lett, 2006, 96: 186603

    Article  ADS  Google Scholar 

  124. Huai Y M, Apalkov D, Diao Z, et al. Structure, materials and shape optimization of magnetic tunnel junction devices: Spin-transfer switching current reduction for future magnetoresistive random access memory application. Jpn J Appl Phys, 2006, 45: 3835–3841

    Article  ADS  Google Scholar 

  125. Diao Z T, Panchula A, Ding Y, et al. Spin transfer switching in dual MgO magnetic tunnel junctions. Appl Phys Lett, 2007, 90: 132508

    Article  ADS  Google Scholar 

  126. Finocchio G, Consolo G, Carpentieri M, et al. Trends in spin-transfer-driven magnetization dynamics of CoFe/AlO/Py and CoFe/MgO/Py magnetic tunnel junctions. Appl Phys Lett, 2006, 89: 262509

    Article  ADS  Google Scholar 

  127. Kubota H, Fukushima A, Yakushiji K, et al. Quantitative measuremnet of voltage dependence of spin-trnasfer torque in MgO-based magnetic tunnel junctions, Nat Phys, 2008, 4: 37–41

    Article  Google Scholar 

  128. Deac A M, Fukushima A, Kubota H, et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nat Phys, 2008, 4: 803–809

    Article  Google Scholar 

  129. Helmer A, Cornelissen S, Devolder T, et al. Quantized spin-wave modes in magnetic tunnel junction nanopillars. Phys Rev B, 2010, 81: 094416

    Article  ADS  Google Scholar 

  130. Wada T, Yamane T, Seki T, et al. Spin-transfer-torque-induced rf oscillations in CoFeB/MgO/CoFeB magnetic tunnel junctions under a perpendicular magnetic field. Phys Rev B, 2010, 81: 104410

    Article  ADS  Google Scholar 

  131. Jung M H, Park S, You C-Y, et al. Bias dependences of in-plane and out-of-plane spin-transfer torques in symmetric MgO-based magnetic tunnel junctions. Phys Rev B, 2010, 81: 134419

    Article  ADS  Google Scholar 

  132. Zeng Z M, Cheung K H, Jiang H W, et al. Evolution of spin-wave modes in magnetic tunnel junction nanopillars. Phys Rev B, 2010, 82: 100410 (R)

    ADS  Google Scholar 

  133. Worledge D C, Hu G, Abraham D W, et al. Spin torque switching of perpendicular Ta/CoFeB/MgO-based magnetic tunnel junctions. Appl Phys Lett, 2011, 98: 022501

    Article  ADS  Google Scholar 

  134. Fukami S, Suzuki T, Nakatani Y, et al. Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl Phys Lett, 2011, 98: 082504

    Article  ADS  Google Scholar 

  135. Diao Z, Apalkov D, Pakala M, et al. Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers. Appl Phys Lett, 2005, 87: 232502

    Article  ADS  Google Scholar 

  136. Takahashi S, Maekawa S. Effect of coulomb blockade on magnetoresistance in ferromagnetic tunnel junctions. Phys Rev Lett, 1998, 80: 1758–1761

    Article  ADS  Google Scholar 

  137. Barnas J, Weymann I. Spin effects in single-electron tunneling. J Phys-Condes Matter, 2008, 20: 423202

    Article  ADS  Google Scholar 

  138. Zhang X G, Wen Z C, Wei H X, et al. Giant Coulomb blockade magnetoresistance in magnetic tunnel junctions with a granular layer. Phys Rev B, 2010, 81: 155122

    Article  ADS  Google Scholar 

  139. Weisheit M, Fähler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 2007, 315: 349–351

    Article  ADS  Google Scholar 

  140. Endo M, Kanai S, Ikeda S, et al. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl Phys Lett, 2010, 96: 212503

    Article  ADS  Google Scholar 

  141. Chiba D, Chiba D, Fukami S, et al. Electrical control of the ferromagnetic phase transition in cobalt at RT. Nat Mater, 2011, 10: 853–856

    Article  ADS  Google Scholar 

  142. Chu Y H, Chu Y H, Martin L W, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater, 2008, 7: 478–482

    Article  ADS  Google Scholar 

  143. Maruyama T, Shiota Y, Nozaki T, et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotechnol, 2009, 4: 158–161

    Article  ADS  Google Scholar 

  144. Ha S S, Kim B H, Lee S, et al. Voltage induced magnetic anisotropy change in ultrathin Fe80Co20/MgO junctions with Brillouin light scattering. Appl Phys Lett, 2010, 96: 142512

    Article  ADS  Google Scholar 

  145. Shiota Y, Maruyama T, Nozaki T, et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl Phys Express, 2009, 2: 063001

    Article  ADS  Google Scholar 

  146. Nozaki T, Shiota Y, Shiraishi M, et al. Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl Phys Lett, 2010, 96: 022506

    Article  ADS  Google Scholar 

  147. Wang W G, Li M G, Hageman S, et al. Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater, 2012, 11: 64–68

    Article  ADS  Google Scholar 

  148. Meng H, Sbiaa R, Akhtar M A K, et al. Electric field effects in low resistance CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. Appl Phys Lett, 2012, 100: 122405

    Article  ADS  Google Scholar 

  149. Bauer G E W, MacDonald A H, Maekawa S, et al. Spin caloritronics. Solid State Commun, 2010, 150: 459–552

    Article  ADS  Google Scholar 

  150. Bauer G E W. Spin caloritronics. Nat Mater, 2012, 11: 391–399

    Article  ADS  Google Scholar 

  151. Uchida K, Takahashi S, Harii K, et al. Observation of the spin Seebeck effect. Nature, 2008, 455: 778–781

    Article  ADS  Google Scholar 

  152. Uchida K, Xiao J, Adachi H, et al. Spin seebeck insulator. Nat Mater, 2010, 9: 894–897

    Article  ADS  Google Scholar 

  153. Jaworski C M, Yang J, Mack S, et al. Observation of the spin-Seebeck effect in a ferromagnetic. Nat Mater, 2010, 9: 898–903

    Article  ADS  Google Scholar 

  154. Huang S Y, Wang W G, Lee S F, et al. Intrinsic spin-dependent thermal transport. Phys Rev Lett, 2011, 107: 216604

    Article  ADS  Google Scholar 

  155. Jansen R, Deac A M, Saito H, et al. Thermal spin current and magnetothermopower by Seebeck spin tunneling. Phys Rev B, 2012, 85: 094401

    Article  ADS  Google Scholar 

  156. Lin W W, Hehn M, Chaput L, et al. Giant spin-dependent thermoelectric effect in magnetic tunnel. Nat Commun, 2012, 3: 744

    Article  Google Scholar 

  157. Flipse J, Bakker F L, Slachter A, et al. Direct observation of the spin-dependent Peltier effect. Nat Nanotechnol, 2012, 7: 166–168

    Article  ADS  Google Scholar 

  158. Czerner M, Bachmann M, Heiliger C, et al. Spin caloritronics in magnetic tunnel junctions: Ab initio studies. Phys Rev B, 2011, 83: 132405

    Article  ADS  Google Scholar 

  159. Jia X T, Xia K, Bauer G E W, et al. Thermal spin transfer in Fe-MgO-Fe tunnel junctions. Phys Rev Lett, 2011, 107: 176603

    Article  ADS  Google Scholar 

  160. Walter M, Walowski J, Zbarsky V, et al. Seebeck effect in magnetic tunnel junctions. Nat Mater, 2011, 10: 742–746

    Article  ADS  Google Scholar 

  161. Liebing N, Serrano-Guisan S, Rott K, et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys Rev Lett, 2011, 107: 177201

    Article  ADS  Google Scholar 

  162. Liebing N, Serrano-Guisan S, Rott K, et al. Determination of spin-dependent Seebeck coefficients of CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars. J Appl Phys, 2012, 111: 07C520

    Article  Google Scholar 

  163. Bosu S, Sakuraba Y, Uchida K, et al. Spin Seebeck effect in thin films of the Heusler compound Co2MnSi. Phys Rev B, 2011, 83: 224401

    Article  ADS  Google Scholar 

  164. Grancharov S G, Zeng H, Sun S, et al. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B, 2005, 109: 13030–13035

    Article  Google Scholar 

  165. Cardoso F A, Ferreira H A, Conde J P, et al. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip. J Appl Phys, 2006, 99: 08B307

    Article  Google Scholar 

  166. Shen W, Schrag B D, Carter M J, et al. Detection of DNA labeled with magnetic nanoparticles using MgO-based magnetic tunnel junction sensors. J Appl Phys, 2008, 103: 07A306

    Article  Google Scholar 

  167. Chen J Y, Feng J F, Coey J M D. Tunable linear magnetoresistance in MgO magnetic tunnel junction sensors using two pinned CoFeB electrodes. Appl Phys Lett, 2012, 100: 142407

    Article  ADS  Google Scholar 

  168. Shen W, Schrag B D, Carter M J, et al. Quantitative detection of DNA labeled with magnetic nanoparticles using arrays of MgO-based magnetic tunnel junction sensors. Appl Phys Lett, 2005, 93: 033903

    Article  ADS  Google Scholar 

  169. Chaves R C, Freitas P P, Ocker B, et al. MgO based picotesla field sensors. J Appl Phys, 2008, 103: 07E931

    Article  Google Scholar 

  170. Duan H, Tseng H W, Li Y, et al. Improvement of the low-frequency sensitivity of MgO-based magnetic tunnel junctions by annealing. J Appl Phys, 2011, 109: 113917

    Article  ADS  Google Scholar 

  171. Martins V C, Germano J, Cardoso F A, et al. Challenges and trends in the development of a magnetoresistive biochip portable platform. J Magn Magn Mater, 2010, 322: 1655–1663

    Article  ADS  Google Scholar 

  172. Ma Q L, Liu H F, Han X F. Fabrication methods and application of magnetic multi layers in linear magnetic sensors. PCT Patent, 2011/150665, 2011-12-08

  173. Wu H, Feng J F, Chen J Y, et al. Fabrication methods and application of magnetic multi layers in magnetic sensors. PRC Patent, 201210285542.

  174. Lei Z Q, Li L, Li G J, et al. Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel junction sensors. J Appl Phys, 2012, 111: 07E505

    Article  Google Scholar 

  175. Kawahara T, Takemura R, Miura K, et al. 2 Mb SPRAM (SPin-transfer torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read. IEEE J Solid-State Circuit, 2008, 43: 109–120

    Article  Google Scholar 

  176. Zhu J G. Magnetoresistive random access memory: The path to com-petitiveness and scalability. Proc IEEE, 2008, 96: 1786–1798

    Article  Google Scholar 

  177. Katine J A, Fullerton E E. Device implications of spin-transfer torques. J Magn Magn Mater, 2008, 320: 1217–1226

    Article  Google Scholar 

  178. Sbiaa R, Meng H, Piramanayagam S N. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys Status Solidi-Rapid Res Lett, 2001, 5: 413–419

    Article  ADS  Google Scholar 

  179. Han X F, Wen Z C, Wei H X. Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching (invited). J Appl Phys, 2008, 103: 07E933

    Article  Google Scholar 

  180. Wei H X, He J X, Wen Z C, et al. Effects of current on nanoscale ring-shaped magnetic tunnel junctions. Phys Rev B, 2008, 77: 134432

    Article  ADS  Google Scholar 

  181. Wei H X, Hickey M C, Anderson G I R, et al. Current-induced magnetization switching in a microscale ring-shaped MTJ. Phys Rev B, 2008, 77: 132401

    Article  ADS  Google Scholar 

  182. Wen Z C, Wang Y, Yu G Q, et al. Patterned nanoscale magnetic tunnel junctions with differenct geometry structures. Spin, 2011, 1: 109–114

    Article  Google Scholar 

  183. Han X F, Wen Z C, Wang Y, et al. Nanoelliptic ring-shaped magnetic tunnel junction and its application in MRAM design with spinpolarized current switching. IEEE Trans Magn, 2011, 47: 2957–2961

    Article  ADS  Google Scholar 

  184. Kiselev S I, Sankey J C, Krivorotov I N, et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature, 2003, 425: 380–383

    Article  ADS  Google Scholar 

  185. Rippard W H, Pufall M R, Kaka S, et al. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys Rev Lett, 2004, 92: 027201

    Article  ADS  Google Scholar 

  186. Kaka S, Pufall M R, Rippard W H, et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature, 2005, 437: 389–392

    Article  ADS  Google Scholar 

  187. Mancof F B, Rizzo N D, Engel B N, et al. Phase-locking in double-point-contact spin-transfer devices. Nature, 2005, 437: 393–395

    Article  ADS  Google Scholar 

  188. Ruotolo A, Cros V, Georges B, et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotechnol, 2009, 4: 528–532

    Article  ADS  Google Scholar 

  189. Georges B, Grollier J, Cros V, et al. Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: an analytical study. Appl Phys Lett, 2008, 92: 232504

    Article  ADS  Google Scholar 

  190. Georges B, Grollier J, Darques M, et al. Coupling efficiency for phase locking of a spin transfer oscillator to a microwave current. Phys Rev Lett, 2008, 101: 017201

    Article  ADS  Google Scholar 

  191. Georges B, Grollier J, Cros V, et al. Origin of the spectral linewidth in non linear spin transfer oscillators based on MgO tunnel junctions. Phys Rev B, 2009, 80: 060404 (R)

    Article  ADS  Google Scholar 

  192. Dussaux A, Georges B, Grollier J, et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nat Commun, 2010, 1: 8

    Article  Google Scholar 

  193. Katsoprinakis G E, Katsoprinakis G E, Polis M, et al. Quantum random number generator based on spin noise. Phys Rev A, 2008, 77: 054101

    Article  ADS  Google Scholar 

  194. Seagate Technology LLC. Magnetic precession based true random number generator. US Patent, 2010/0174, 766, 2010-07-08

    Google Scholar 

  195. Kabushiki Kaisha Toshiba. Random number generator. US Patent, 2012/0026, 784, 2012-02-22

  196. Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488–1495

    Article  ADS  Google Scholar 

  197. Nikonov D E, Bourianoff G I, Gargini P A. Power dissipation in spintronic devices out of thermodynamic equilibrium. J Supercond Nov Magn, 2006, 19: 497–513

    Article  Google Scholar 

  198. Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56: 665–667

    Article  ADS  Google Scholar 

  199. Behin-Aein B, Salahuddin S, Datta S. Switching energy of ferromagnetic logic bits. IEEE Trans Nanotechnol, 2009, 8: 505–514

    Article  Google Scholar 

  200. Johnson M. Bipolar spin switch. Science, 1993, 260: 320–323

    Article  ADS  Google Scholar 

  201. Monsma D J, Lodder J C, Popma T J A, et al. Perpendicular hot rlectron spin-valve effect in a new magnetic field sensor: The spin-valve transistor. Phys Rev Lett, 1995, 74: 5260–5263

    Article  ADS  Google Scholar 

  202. Dijken S van, Jiang C, Parkin S S P, et al. Room temperature operation of a high output current magnetic tunnel transistor. Appl Phys Lett, 2002, 80: 3364–3366

    Article  ADS  Google Scholar 

  203. Sugahara S, Tanaka M. A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl Phys Lett, 2004, 84: 2307–2309

    Article  ADS  Google Scholar 

  204. Sugahara S. Spin metal-oxide-semiconductor field-effect transistors (spin MOSFETs) for integrated spin electronics. IEE Proc Circuits Devices Syst, 2005, 152: 355–365

    Article  Google Scholar 

  205. Shuto Y, Nakane R, Wang W H, et al. A new spin-functional metal-oxide-semiconductor field-effect transistor based on magnetic tunnel junction technology: Pseudo-spin-MOSFET. Appl Phys Express, 2010, 3: 013003

    Article  ADS  Google Scholar 

  206. Chua L O. Memristor—The missing circuit element. IEEE Trans Circuit Theory, 1971, CT18: 507–519

    Article  Google Scholar 

  207. Strukov D B. The missing memristor found. Nature, 2008, 453: 80–83

    Article  ADS  Google Scholar 

  208. Krzysteczko P. Memristive switching of MgO based magnetic tunnel junctions. Appl Phys Lett, 2009, 95: 112508

    Article  ADS  Google Scholar 

  209. Slaughter J M, Rizzo N D, Janesky J, et al. High density ST-MRAM technology. In: Proceedings of IEEE International Electron Device Meeting. San Francisco, USA, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuFeng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Ali, S.S. & Liang, S. MgO(001) barrier based magnetic tunnel junctions and their device applications. Sci. China Phys. Mech. Astron. 56, 29–60 (2013). https://doi.org/10.1007/s11433-012-4977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4977-1

Keywords

Navigation