Skip to main content
Log in

Invisibility cloaks from forward design to inverse design

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we review the invisibility cloak design methodologies and their experimental developments from a practical perspective, as well as basic underlying theories, derived materials, and experimental implementations. Particular stress is laid on the recent transition from forward design to inverse design where some significant limitations of previous cloaking solution in practice can be solved. We anticipate that future invisibility cloaking devices will be based on integration of both forward and inverse designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  2. Leonhardt U. Optical conformal mapping. Science, 2006, 312: 1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  3. Ward A J, Pendry J B. Refraction and geometry in Maxwell’s equations. J Mod Opt, 1996, 43: 773–793

    Article  MathSciNet  MATH  Google Scholar 

  4. Teixeira F L, Chew W C. Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. J Electromagn Waves Appl, 1999, 13: 665–686

    Article  MathSciNet  MATH  Google Scholar 

  5. Teixeira F L, Chew W C. Lattice electromagnetic theory from a topological viewpoint. J Math Phys, 1999, 40: 169–187

    Article  MathSciNet  MATH  Google Scholar 

  6. Lax M, Nelson D F. Maxwell equations in material form. Phys Rev B, 1976, 13: 1777–1784

    Article  MathSciNet  Google Scholar 

  7. Dolin S L. On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling. Izv Vyssh Uchebn Zaved Radiofiz, 1961, 4: 964–967

    Google Scholar 

  8. Dantzig D V. The fundamental equations of electromagnetism, independent of metrical geometry. Proc Cambridge Philos Soc, 1934, 30: 421–427

    Article  Google Scholar 

  9. Leonhardt U. Notes on conformal invisibility devices. New J Phys, 2006, 8: 118–118

    Article  Google Scholar 

  10. Leonhardt U. Optical metamaterials-invisibility cup. Nat Photon, 2007, 1: 207–208

    Article  Google Scholar 

  11. Leonhardt U, Philbin T G. Transformation optics and the geometry of light. Prog Opt, 2009, 53: 69–153

    Article  Google Scholar 

  12. Leonhardt U, Tyc T. Broadband invisibility by non-Euclidean cloaking. Science, 2009, 323: 110–112

    Article  Google Scholar 

  13. Leonhardt U. To invisibility and beyond. Nature, 2011, 471: 292–293

    Article  Google Scholar 

  14. Perczel J, Tyc T, Leonhardt U. Invisibility cloaking without superluminal propagation. New J Phys, 2011, 13: 083007

    Article  Google Scholar 

  15. Alu A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E, 2005, 72: 016623

    Article  Google Scholar 

  16. Alu A, Engheta N. Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A-Pure Appl Opt, 2008, 10: 093002

    Article  Google Scholar 

  17. Alu A, Engheta N. Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. Opt Express, 2007, 15: 3318–3332

    Article  Google Scholar 

  18. Alu A, Engheta N. Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Opt Express, 2007, 15: 7578–7590

    Article  Google Scholar 

  19. Shelby R A, Smith D R, Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl Phys Lett, 2001, 78: 489–491

    Article  Google Scholar 

  20. Chen H. Metamaterials: constitutive parameters, performance, and chemical methods for realization. J Mat Chem, 2011, 21: 6452–6463

    Article  Google Scholar 

  21. Chen H, Wu B I, Ran L, et al. Controllable left-handed metamaterial and its application to a steerable antenna. Appl Phys Lett, 2006, 89: 053509

    Article  Google Scholar 

  22. Aydin K, Li Z, Hudlička M, et al. Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions. New J Phys, 2007, 9: 326–326

    Article  Google Scholar 

  23. Bakker R M, Drachev V P, Yuan H K, et al. Near-field, broadband optical spectroscopy of metamaterials. Phys B-Condens Mat, 2007, 394: 137–140

    Article  Google Scholar 

  24. Cheng X X, Chen H S, Ran L X, et al. Negative refraction and cross polarization effects in metamaterial realized with bianisotropic S-ring resonator. Phys Rev B, 2007, 76: 024402

    Article  Google Scholar 

  25. Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317: 1698–1702

    Article  Google Scholar 

  26. Govyadinov A A, Podolskiy V A, Noginov M A. Active metamaterials: Sign of refractive index and gain-assisted dispersion management. Appl Phys Lett, 2007, 91: 191103

    Article  Google Scholar 

  27. Lapine M, Tretyakov S. Contemporary notes on metamaterials. IET Proc-H Microwave Ant Propag, 2007, 1: 3–11

    Article  Google Scholar 

  28. Sihvola A, Tretyakov S, de Baas A. Metamaterials with extreme material parameters. J Commun Technol Electron, 2007, 52: 986–990

    Article  Google Scholar 

  29. Silveirinha M. Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Phys Rev B, 2007, 75: 115104

    Article  Google Scholar 

  30. Wood B, Pendry J B. Metamaterials at zero frequency. J Phys Condens Mat, 2007, 19: 076208

    Article  Google Scholar 

  31. Liu N, Guo H C, Fu L W, et al. Three-dimensional photonic metamaterials at optical frequencies. Nat mat, 2008, 7: 31–37

    Article  Google Scholar 

  32. Reza A, Dignam M M, Hughes S. Can light be stopped in realistic metamaterials? Nature, 2008, 455: E10–E11

    Article  Google Scholar 

  33. Lapine M, Powell D, Gorkunov M, et al. Structural tunability in metamaterials. Appl Phys Lett, 2009, 95: 084105

    Article  Google Scholar 

  34. Shen N H, Kafesaki M, Koschny T, et al. Broadband blueshift tunable metamaterials and dual-band switches. Phys Rev B, 2009, 79: 161102

    Article  Google Scholar 

  35. Moser H O, Jian L K, Chen H S, et al. THz meta-foil-a platform for practical applications of metamaterials. J Mod Opt, 2010, 57: 1936–1943

    Article  Google Scholar 

  36. Bilotti F, Sevgi L. Metamaterials: definitions, properties, applications, and FDTD-based modeling and simulation. Int J RF Microw Comput-Aid Eng, 2012, 22: 422–438

    Article  Google Scholar 

  37. Diedrich D, Rottler A, Heitmann D, et al. Metal-dielectric metamaterials for transformation-optics and gradient-index devices in the visible regime. New J Phys, 2012, 14: 053042

    Article  Google Scholar 

  38. Simovski C R, Belov P A, Atrashchenko A V, et al. Wire metamaterials: physics and applications. Adv mat, 2012, 24: 4229–4248

    Article  Google Scholar 

  39. Paniagua-Dominguez R, Abujetas D R, Sanchez-Gil J A. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires. Sci Rep, 2013, 3: 1507

    Article  Google Scholar 

  40. Sun L, Gao J, Yang X. Broadband epsilon-near-zero metamaterials with steplike metal-dielectric multilayer structures. Phys Rev B, 2013, 87: 165134

    Article  Google Scholar 

  41. Chen H, Chan C T, Sheng P. Transformation optics and metamaterials. Nat mat, 2010, 9: 387–396

    Article  Google Scholar 

  42. Schurig D, Pendry J B, Smith D R. Calculation of material properties and ray tracing in transformation media. Opt Express, 2006, 14: 9794–9804

    Article  Google Scholar 

  43. Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977–980

    Article  Google Scholar 

  44. Kundtz N, Gaultney D, Smith D R. Scattering cross-section of a transformation optics-based metamaterial cloak. New J Phys, 2010, 12: 043039

    Article  Google Scholar 

  45. Kanté B, Germain D, de Lustrac A. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys Rev B, 2009, 80: 201104

    Article  Google Scholar 

  46. Landy N, Smith D R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mats, 2013, 12: 25–28

    Article  Google Scholar 

  47. Chen H, Zheng B. Broadband polygonal invisibility cloak for visible light. Sci Rep, 2012, 2: 255

    Google Scholar 

  48. Narayana S, Sato Y. DC magnetic cloak. Adv Mat, 2012, 24: 71–74

    Article  Google Scholar 

  49. Yang F, Mei Z L, Jin T Y, et al. DC electric invisibility cloak. Phys Rev Lett, 2012, 109: 053902

    Article  Google Scholar 

  50. Liu M, Mei Z L, Ma X, et al. DC illusion and its experimental verification. Appl Phys Lett, 2012, 101: 051905

    Article  Google Scholar 

  51. Yang F, Mei Z L, Yang X Y, et al. A negative conductivity material makes a DC invisibility cloak hide an object at a distance. Adv Funct Mater, 2013, 23: 4306–4310

    Article  Google Scholar 

  52. Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett, 2008, 101: 203901

    Article  Google Scholar 

  53. Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak. Science, 2009, 323: 366–369

    Article  Google Scholar 

  54. Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics. Nat Mat, 2009, 8: 568–571

    Article  Google Scholar 

  55. Gabrielli L H, Cardenas J, Poitras C B, et al. Siliconmnanostructure cloak operating at optical frequencies. Nat Photon, 2009, 3: 461–463

    Article  Google Scholar 

  56. Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun, 2010, 1: 124

    Article  Google Scholar 

  57. Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328: 337–339

    Article  Google Scholar 

  58. Ergin T, Fischer J, Wegener M. Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. Phys Rev Lett, 2011, 107: 173901

    Article  Google Scholar 

  59. Zhou F, Bao Y J, Cao W, et al. Hiding a realistic object using a broadband terahertz invisibility cloak. Sci Rep, 2011, 1: 78

    Google Scholar 

  60. Zhang B, Chan T, Wu B I. Lateral shift makes a ground-plane cloak detectable. Phys Rev Lett, 2010, 104: 233903

    Article  Google Scholar 

  61. Zhang J, Liu L, Luo Y, et al. Homogeneous optical cloak constructed with uniform layered structures. Opt Express, 2011, 19: 8625

    Article  Google Scholar 

  62. Xu X F, Feng Y J, Xiong S, et al. Broad band invisibility cloak made of normal dielectric multilayer. Appl Phys Lett, 2011, 99: 154104

    Article  Google Scholar 

  63. Chen X Z, Luo Y, Zhang J J, et al. Macroscopic invisibility cloaking of visible light. Nat Commun, 2011, 2: 176

    Article  Google Scholar 

  64. Zhang B, Luo Y, Liu X, et al. Macroscopic invisibility cloak for visible light. Phys Rev Lett, 2011, 106: 033901

    Article  Google Scholar 

  65. Alù A, Engheta N. Effects of size and frequency dispersion in plasmonic cloaking. Phys Rev E, 2008, 78: 045602

    Article  Google Scholar 

  66. Alù A, Engheta N. Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking. New J Phys, 2008, 10: 115036

    Article  Google Scholar 

  67. Alù A, Engheta N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett, 2008, 100: 113901

    Article  Google Scholar 

  68. Alù A, Engheta N. Cloaking a sensor. Phys Rev Lett, 2009, 102: 233901

    Article  Google Scholar 

  69. Chen P Y, Alù A. Mantle cloaking using thin patterned metasurfaces. Phys Rev B, 2011, 84: 205110

    Article  Google Scholar 

  70. Castaldi G, Savoia S, Galdi V, et al. PT metamaterials via complex-coordinate transformation optics. Phys Rev Lett, 2013, 110: 173901

    Article  Google Scholar 

  71. Castaldi G, Gallina I, Galdi V, et al. Cloak/anti-cloak interactions. Opt Express, 2009, 16: 106343

    Google Scholar 

  72. Argyropoulos C, Chen P Y, Monticone F, et al. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett, 2012, 108: 263905

    Article  Google Scholar 

  73. Monticone F, Argyropoulos C, Alù A. Multilayered plasmonic covers for comblike scattering response and optical tagging. Phys Rev Lett, 2013, 110: 113901

    Article  Google Scholar 

  74. Edwards B, Alù A, Silveirinha M, et al. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett, 2009, 103: 153901

    Article  Google Scholar 

  75. Rainwater D, Kerkhoff A, Melin K, et al. Experimental verification of three-dimensional plasmonic cloaking in freespace. New J Phys, 2012, 14: 013054

    Article  Google Scholar 

  76. Soric J C, Chen P Y, Kerkhoff A, et al. Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space. New J Phys, 2013, 15: 033037

    Article  Google Scholar 

  77. Chen H, Wu B I, Zhang B, et al. Electromagnetic wave interactions with a metamaterial cloak. Phys Rev Lett, 2007, 99: 063903

    Article  Google Scholar 

  78. Xu S, Cheng X X, Xi S, et al. Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. Phys Rev Lett, 2012, 109: 223903

    Article  Google Scholar 

  79. Xi S, Chen H, Zhang B, et al. Route to low-scattering cylindrical cloaks with finite permittivity and permeability. Phys Rev B, 2009, 79: 155122

    Article  Google Scholar 

  80. Hashemi H, Zhang B, Joannopoulos J D, et al. Delay-bandwidth and delay-loss limitations for cloaking of large objects. Phys Rev Lett, 2010, 104: 253903

    Article  Google Scholar 

  81. Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech, 1999, 47: 2075–2084

    Article  Google Scholar 

  82. Chen H S, Huang L, Cheng X X, et al. Magnetic properties of metamaterial composed of closed rings. Prog Electromag Res, 2011, 115: 317

    Google Scholar 

  83. Balanis C A. Advanced Engineering Electromagnetics. New York: John Wiley & Sons, 1989

    Google Scholar 

  84. Urzhumov Y, Landy N, Driscoll T, et al. Thin low-loss dielectric coatings for free-space cloaking. Opt Lett, 2013, 38: 1606

    Article  Google Scholar 

  85. Popa B I, Cummer S A. Cloaking with optimized homogeneous anisotropic layers. Phys Rev A, 2009, 79: 023806

    Article  Google Scholar 

  86. Yu Z Z, Feng Y J, Xu X F, et al. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. J Phys D-Appl Phys, 2011, 44: 185102

    Article  Google Scholar 

  87. Zhang J J, Luo Y, Mortensen N A. Minimizing the scattering of a nonmagnetic cloak. Appl Phys Lett, 2010, 96: 113511

    Article  Google Scholar 

  88. Wang X H, Semouchkina E. A route for efficient non-resonance cloaking by using multilayer dielectric coating. Appl Phys Lett, 2013, 102: 113506

    Article  Google Scholar 

  89. Roberts D A, Rahm M, Pendry J B, et al. Transformation-optical design of sharp waveguide bends and corners. Appl Phys Lett, 2008, 93: 251111

    Article  Google Scholar 

  90. Zhang B, Wu B I, Chen H. Optical delay of a signal through a dispersive invisibility cloak. Opt Express, 2009, 17: 6721–6726

    Article  Google Scholar 

  91. Smolyaninov I I. Transformational optics of plasmonic metamaterials. New J Phys, 2008, 10: 115033

    Article  Google Scholar 

  92. Huidobro P A, Nesterov M L, Martin-Moreno L, et al. Transformation optics for plasmonics. Nano Lett, 2010, 10: 1985–1990

    Article  Google Scholar 

  93. Liu Y, Zentgraf T, Bartal G, et al. Transformational plasmon optics. Nano lett, 2010, 10: 1991–1997

    Article  Google Scholar 

  94. Fernández-Dominguez A I, Wiener A, Garcia-Vidal F J, et al. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett, 2012, 108: 106802

    Article  Google Scholar 

  95. Markov P, Valentine J G, Weiss S M. Fiber-to-chip coupler based on transformation optics. In: Conference on Lasers and Electro-Optics (CLEO), San Jose, 2012. 1–2

    Google Scholar 

  96. Gabrielli L H, Liu D, Johnson S G, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BaiLe Zhang or HongSheng Chen.

Additional information

Contribute equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Wang, Y., Zhang, B. et al. Invisibility cloaks from forward design to inverse design. Sci. China Inf. Sci. 56, 1–11 (2013). https://doi.org/10.1007/s11432-013-5033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5033-0

Keywords

Navigation