Skip to main content
Log in

Markov chain approach to identifying Wiener systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Identification of the Wiener system composed of an infinite impulse response (IIR) linear subsystem followed by a static nonlinearity is considered. The recursive estimates for unknown coefficients of the linear subsystem and for the values of the nonlinear function at any fixed points are given by the stochastic approximation algorithms with expanding truncations (SAAWET). With the help of properties of the Markov chain connected with the linear subsystem, all estimates derived in the paper are proved to be strongly consistent. In comparison with the existing results on the topic, the method presented in the paper simplifies the convergence analysis and requires weaker conditions. A numerical example is given, and the simulation results are consistent with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu Y. Distillation column identification for control using Wiener model. In: Proceedings of American Control Conference, San Diego, 1999. 55: 3462–3466

    Google Scholar 

  2. Kalafatis A, Arifin N, Wang L, et al. A new approach to the identification of pH processes based on the Wiener model. Chem Eng Sci, 1995, 50: 3693–3701

    Article  Google Scholar 

  3. Hunter I W, Korenberg M J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Bio Cybern, 1986, 55: 136–144

    Google Scholar 

  4. Bai E W. Frequency domain identification of Wiener models. Automatica, 2003, 39: 1521–1530

    Article  MATH  Google Scholar 

  5. Boyd S, Chua L O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circ Syst, 1985, 32: 1150–1161

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans Autom Control, 2006, 51: 390–400

    Article  Google Scholar 

  7. Greblicki W. Nonparametric approach to Wiener system identification. IEEE Trans Circuits Syst-I: Fundam Theory Appl, 1997, 44: 538–545

    Article  MathSciNet  Google Scholar 

  8. Hagenblad A, Ljung L, Wills A. Maximum likelihood identification of Wiener models. Automatica, 2008, 44: 2697–2705

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu X L, Chen H F. Strong consistence of recursive identification forWiener systems. Automatica, 2005, 41: 1905–1916

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu X L, Chen H F. Identification for Wiener systems with RTF subsystems. European J Control, 2006, 6: 581–594

    Article  MathSciNet  Google Scholar 

  11. Nordsjö A E, Zetterberg L H. Identification of certain time-varying nonlinear Wiener and Hammerstein systems. IEEE Trans Signal Process, 2001, 49: 577–592

    Article  Google Scholar 

  12. Verhaegen M, Westwick D. Identifying MIMO Wiener systems in the context of subspace model identificatin methods. Int J Control, 1996, 63: 331–349

    Article  MathSciNet  MATH  Google Scholar 

  13. Vörös J. Parameter identification of Wiener systems with discontinuous nonlinearities. Syst Control Lett, 2001, 44: 363–372

    Article  MATH  Google Scholar 

  14. Wigren T. Convergence analysis of recursive algorithms based on the nonlinear Wiener model. IEEE Trans Autom Control, 1994, 39: 2191–2206

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston: Birkhäuser, 1991

    MATH  Google Scholar 

  16. Fan J Q, Yao Q. Nonlinear Time Series: Nonparametric and Parametric Approach. New York: Springer-Verlag, 2003

    Book  MATH  Google Scholar 

  17. Ljung L. System Identification: Theory for Users. Upper Saddle River: Prentice Hall, 1987

    Google Scholar 

  18. Zhao W X, Chen H F, Zheng W X. Recursive identification for nonlinear ARX systems based on stochastic approximation algorithm. IEEE Trans Autom Control, 2010, 55: 1287–1299

    Article  MathSciNet  Google Scholar 

  19. Bussgang J J. Crosscorrelation functions of amplitude-distorted Gaussian signals. Technical Report 216. MIT Research Laboratory of Electronics, 1952

  20. Song Q J, Chen H F. Identification of errors-in-variables systems with ARMA observation noise. Syst Control Lett, 2008, 57: 420–424

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciarlet P G. Introduction to Numerical Linear Algebra and Optimisation. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  22. Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993

    MATH  Google Scholar 

  23. Davydov Yu A. Mixing conditions for Markov chains. SIAM Probability Appl, 1973, 18: 312–328

    Article  MATH  Google Scholar 

  24. Nummelin E. General Irreducible Markov Chains and Non-negative Operators. Cambridge: Cambridge University Press, 1984

    Book  MATH  Google Scholar 

  25. Tong H. Nonlinear Time Series. Oxford: Oxford University Press, 1990

    Google Scholar 

  26. Masry E, Györfi L. Strong consistency and rates for recursive probability density estimators of stationary processes. J Multivariate Analysis, 1987, 22: 79–93

    Article  MATH  Google Scholar 

  27. Chen H F. Stochastic Approximation and Its Applications. Dordrecht: Kluwer, 2002

    MATH  Google Scholar 

  28. Song Q J, Chen H F. Identification of Wiener systems with internal noise. J Syst Sci Complex, 2008, 21: 378–393

    Article  MathSciNet  MATH  Google Scholar 

  29. Hirschman I I, Widder D V. The Convolution Transform. Princeton, NJ: Princeton University Press, 1955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanFu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Chen, H. Markov chain approach to identifying Wiener systems. Sci. China Inf. Sci. 55, 1201–1217 (2012). https://doi.org/10.1007/s11432-012-4582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4582-y

Keywords

Navigation