Skip to main content
Log in

An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft observations at L1 point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gosling J T. Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Priest E R, Lee L C, Russell C T, eds. Physics of Magnetic Flux Ropes. Geophys Monogr. Washington D. C.: AGU, 1990, 58: 343–364

    Google Scholar 

  2. Wu S T, Guo W P, Dryer M, et al. Dynamical evolution of a coronal streamer-flux rope system: II. A self-consistent non-planar magnetohydrodynamic solution. Sol Phys, 1997, 170(2): 265–282

    Article  Google Scholar 

  3. Wu S T, Guo W P, Michels D J, et al. MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: An analysis of the January 1997 Sun- Earth connection event. J Geophys Res, 1999, 104(A7): 14789–14802

    Article  Google Scholar 

  4. Odstrcil D, Linker J A, Lionello R, et al. Merging of coronal and heliospheric numerical 2-D MHD models. J Geophys Res, 2002, 107(A12): SSH 14-1, 1493

    Article  Google Scholar 

  5. Usmanov A V, Goldstein M L, Besser B P, et al. A global MHD solar wind model with WKB Alfven waves: Comparison with Ulysses data. J Geophys Res, 2000, 105(A6): 12675–12696

    Article  Google Scholar 

  6. Feng X. A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation. Chin Sci Bull, 2005, 50(7): 672–678

    Article  Google Scholar 

  7. Shen F, Feng X, Wu S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event. J Geophys Res, 2007, 112(A6): A06109

    Article  Google Scholar 

  8. Karimabadi H, Driscoll J, Omelchenko Y A, et al. A new asynchronous methodology for modeling of physical systems: breaking the curse of Courant condition. J Comput Phys, 2005, 205(2): 755–775

    Article  MATH  Google Scholar 

  9. Omelchenko Y A, Karimabadi H. Self-adaptive time integration of flux-conservativeequations with sources. J Comput Phys, 2006, 216(1): 179–194

    Article  MATH  MathSciNet  Google Scholar 

  10. Omelchenko Y A, Karimabadi H. Event-driven hybrid particle-in-cell simulation: a new paradigm for multi-scale plasma modeling. J Comput Phys, 2006, 216(1): 153–178

    Article  MATH  MathSciNet  Google Scholar 

  11. Omelchenko Y A, Karimabadi H. A time-accurate explicit multi-scale technique for gas dynamics. J Comput Phys, 2007, 226(1): 282–300

    Article  MATH  MathSciNet  Google Scholar 

  12. Unfer T, Boeuf J P, Rogier F, et al. An asynchronous scheme with local time stepping for multi-scale transport problems: Application to gas discharges. J Comput Phys, 2007, 227(2): 898–918

    Article  MATH  MathSciNet  Google Scholar 

  13. Feng X. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation (in Chinese). Chin J Space Sci, 2002, 22(4): 300–308

    Google Scholar 

  14. Tóth G. The ∇ · B =0 constraint in shock-capturing magnetohydrodynamics codes. J Comput Phys, 2000, 161(2): 605–652

    Article  MATH  MathSciNet  Google Scholar 

  15. Parker E N. Interplanetary Dynamical Processes. New York: Wiley-Interscience, 1963

    MATH  Google Scholar 

  16. Hu Y, Feng X, Wu S T, et al. Three-dimensional MHD modeling of the global corona throughout Solar Cycle 23. J Geophys Res, 2008, 113(A3): A03106

    Article  Google Scholar 

  17. Svalgaard L, Duvall T L, Scherrer P H. The strength of the suns polar fields. Sol Phys, 1978, 58(2): 225–239

    Article  Google Scholar 

  18. Svalgaard L. How good (or bad) are the inner boundary conditions for heliospheric solar wind modeling. SHINE 2006 Workshop. Utah: Rice University, 2006

    Google Scholar 

  19. Wang Y M, Sheeley Jr N R. On potential field models of the solar corona. Astrophys J, 1992, 392(1): 310–319

    Article  Google Scholar 

  20. Luhmann J G, Li Y, Arge C N, et al. Solar cycle changes in coronal holes and space weather cycles. J Geophys Res, 2002, 107(A8): 1154

    Article  Google Scholar 

  21. McComas D J, Barraclough B L, Funsten H O, et al. Solar wind observations over Ulysses’ first full polar orbit. J Geophys Res, 2000, 105(A5): 10419–10434

    Article  Google Scholar 

  22. McComas D J, Elliott H A, Schwadron N A, et al. The three-dimensional solar wind around solar maximum. Geophys Res Lett, 2003, 30(10): 24–1

    Article  Google Scholar 

  23. McComas D J, Elliott H A, Gosling J T, et al. Ulysses observations of very different heliosphere structure during the declining phase of solar activity cycle 23. Geophys Res Lett, 2006, 33(9): L09102

    Article  Google Scholar 

  24. Ogawa T, Den M, Tanaka T. Three-dimensional hydrodynamic code for interplanetary shock wave. In: Proceedings of ISSS-7. Kyoto: Kyoto University, 2005. 26–28

    Google Scholar 

  25. Dryer M. Multi-dimensional MHD simulation of solar-generated disturbances: Space weather forecasting of geomagnetic storms. AIAA J, 1998, 36(3): 365–370

    Article  Google Scholar 

  26. Fry C D, Sun W, Deehr C S, et al. Improvements to the HAF solar wind model for space weather predictions. J Geophys Res, 2001, 106(A10): 20985–21002

    Article  Google Scholar 

  27. Odstrcil D, Riley P, Zhao X P. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res, 2004, 109(A2): A02116

    Article  Google Scholar 

  28. Zhou Y F, Feng X, Wu S T. Numerical simulation of the 12 May 1997 CME event. Chin Phys Lett, 2008, 25(2): 790–793

    Article  Google Scholar 

  29. Lepping R P, Jones J A, Burlaga L F. Magnetic field structure of interplanetary magnetic clouds at 1AU. J Geophys Res, 1990, 95(A8): 957–965

    Article  Google Scholar 

  30. Lynch B J, Zurbuchen T H, Fisk L A, et al. Internal structure of magnetic clouds: plasma and composition. J Geophys Res, 2003, 108(A6): SSH 6-1, 1239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Shen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40874077, 40621003, 40874091, 40536029, 40523006 and 40604019), the National Basic Research Program of China (“973” Project) (Grant No. 2006CB806304), and the Specialized Research Fund for State Key Laboratories

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, F., Feng, X. & Song, W. An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind. Sci. China Ser. E-Technol. Sci. 52, 2895–2902 (2009). https://doi.org/10.1007/s11431-009-0291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0291-1

Keywords

Navigation