Skip to main content
Log in

Polypyrrole-cobalt-carbon nanocomposites as efficient counter electrode materials for dye-sensitized solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, we demonstrate a new kind of Pt-free counter electrode for dye-sensitized solar cells (DSCs). Polypyrrole-cobalt-carbon (PPY-Co-C) nanocomposites, with the advantages of low cost and simple preparation, show favorable catalytic activity in promoting tri-iodide reduction. The DSC composed of the PPY-Co-C nanocomposite electrode exhibits an acceptable energy conversion efficiency of 6.01%, a considerable short-circuit photocurrent of 15.33 mA cm−2, and a low charge-transfer resistance of 1.5 Ω cm2. The overall performance of PPY-Co-C is superior to the carbon counterparts and comparable with the platinum reference, rendering them efficient and promising counter electrode materials for DSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev, 2010, 110: 6595–6663

    Article  CAS  Google Scholar 

  3. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc, 2006, 153: A2255–A2261

    Article  CAS  Google Scholar 

  4. Ramasamy E, Lee WJ, Lee DY, Song JS. Nanocarbon counterelectrode for dye sensitized solar cells. Appl Phys Lett, 2007, 90: 173103–173106

    Article  Google Scholar 

  5. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed, 2013, 52: 9210–9214

    Article  CAS  Google Scholar 

  6. Ju MJ, Kim JC, Choi HJ, Choi IT, Kim SG, Lim K, Ko J, Lee JJ, Jeon IY, Baek JB, Kim HK. N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. ACS Nano, 2013, 7: 5243–5250

    Article  CAS  Google Scholar 

  7. Fang H, Yu C, Ma T, Qiu J. Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells. Chem Commun, 2014, 50: 3328–3330

    Article  CAS  Google Scholar 

  8. Peng S, Li L, Tan H, Srinivasan M, Mhaisalkar SG, Ramakrishna S, Yan Q. Platinum/polyaniline transparent counter electrodes for quasisolid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte. Electrochim Acta, 2013, 105: 447–454

    Article  CAS  Google Scholar 

  9. Ikegami M, Miyoshi K, Miyasaka T, Teshima K, Wei T, Wan C, Wang Y. Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Appl Phys Lett, 2007, 90: 153122–152125

    Article  Google Scholar 

  10. Wei T, Wan C, Wang Y. Poly(n-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Appl Phys Lett, 2006, 88: 103122–103125

    Article  Google Scholar 

  11. Wei T, Wan C, Wang Y, Chen C, Shiu H. Immobilization of poly(n-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indiumtin oxide glass and its application in dye-sensitized solar cells. J Phys Chem C, 2007, 111: 4847–4853

    Article  CAS  Google Scholar 

  12. Han H, Bach U, Cheng Y, Caruso RA. Increased nanopore filling: effect on monolithic all-solid-state dye-sensitized solar cells. Appl Phys Lett, 2007, 90: 213510–213513

    Article  Google Scholar 

  13. Schmidt-Mende L, Zakeeruddin SM, Grätzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Appl Phys Lett, 2005, 86: 013504–013507

    Article  Google Scholar 

  14. Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. J Am Chem Soc, 2008, 130: 1258–1263

    Article  CAS  Google Scholar 

  15. Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater, 2005, 4: 607–611

    Article  Google Scholar 

  16. Fan L, Chen Y, Wu J, Li Z, Xiao Y, Huang M, Yu H. Efficiency improvement of flexible dye-sensitized solar cells by introducing mesoporous TiO2 microsphere. Sci China Chem, 2013, 56: 1470–1477

    Article  CAS  Google Scholar 

  17. Yin X, Wu F, Fu N. Han J, Chen D, Xu P, He M, Lin Y. Facile synthesis of poly(3,4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells. ACS Appl Mater Interf, 2013, 5: 8423–8429

    Article  CAS  Google Scholar 

  18. Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature, 2006, 443: 63–66

    Article  CAS  Google Scholar 

  19. Cai F, Chen J, Xu R. Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells. Chem Lett, 2006, 35: 1266–1267

    Article  CAS  Google Scholar 

  20. Cai F, Liang J, Tao Z, Chen J, Xu R. Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells. J Power Source, 2008, 177: 631–636

    Article  CAS  Google Scholar 

  21. Xu W, Peng B, Chen J, Liang M, Cai F. New triphenylamine-based dyes for dye-sensitized solar cells. J Phys Chem C, 2008, 112: 874–880

    Article  CAS  Google Scholar 

  22. Millán WM, Thompson TT, Arriaga LG, Smit MA. Characterization of composite materials of electroconductive polymer and cobalt as electrocatalysts for the oxygen reduction reaction. Int J Hydrogen Energy, 2009, 34: 694–702

    Article  Google Scholar 

  23. Han L, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl Phys Lett, 2004, 84: 2433–2435

    Article  CAS  Google Scholar 

  24. Ma T, Fang X, Akiyama M, Inoue K, Noma H, Abe E. Properties of several types of novel counter electrodes for dye-sensitized solar cells. J Electroanal Chem, 2004, 574: 77–83

    Article  CAS  Google Scholar 

  25. Han L, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. Appl Phys Lett, 2005, 86: 213501–213504

    Article  Google Scholar 

  26. Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev, 2013, 42: 3453–3488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FangYi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, K., Cheng, F. et al. Polypyrrole-cobalt-carbon nanocomposites as efficient counter electrode materials for dye-sensitized solar cells. Sci. China Chem. 57, 1559–1563 (2014). https://doi.org/10.1007/s11426-014-5121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5121-z

Keywords

Navigation