Skip to main content
Log in

The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions

  • Reviews
  • Special Issue · The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hypervalent iodine(III) reagents have been vastly used in many useful organic transformations. In this review article, we highlight the strategies that used the common hypervalent iodine(III) reagents as oxidants to synthesize the heterocyclic compounds, based on the patterns of bond formation during the construction of the heterocyclic backbones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moriarty RM, Vaid RK. Carbon-carbon bond formation via hypervalent iodine oxidations. Synthesis, 1990, 6: 431–447

    Google Scholar 

  2. Prakash O, Saini N, Sharma PK. Hypervalent iodine reagents in the synthesis of heterocyclic compounds. Synlett, 1994, 2: 221–227

    Google Scholar 

  3. Prakash O, Saini N, Sharma PK. [Hydroxy(tosyloxy)iodo]benzene: A useful hypervalent iodine reagent for the synthesis of heterocyclic compounds. Heterocycles, 1994, 38: 409–431

    CAS  Google Scholar 

  4. Stang PJ. Organic polyvalent iodine compounds. Chem Rev, 1996, 96: 1123–1178

    CAS  Google Scholar 

  5. Kitamura T, Fujiwara Y. Recent progress in the use of hypervalent iodine reagents in organic synthesis. A review. Org Prep Proced Int, 1997, 29: 409–458

    CAS  Google Scholar 

  6. Moriarty RM, Prakash O. Synthesis of heterocyclic compounds using organohypervalent iodine reagents, Adv Heterocycl Chem, 1998, 69: 1–87

    CAS  Google Scholar 

  7. Wirth T, Hirt UH. Hypervalent iodine compounds: Recent advances in synthetic applications. Synthesis, 1999, 8: 1271–1287

    Google Scholar 

  8. Togo H, Katohgi M. Synthetic uses of organohypervalent iodine compounds through radical pathways. Synlett, 2001, 5: 565–581

    Google Scholar 

  9. Zhdankin VV, Stang PJ. Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev, 2002, 102: 2523–2584

    CAS  Google Scholar 

  10. Moreno I, Tellitu I, Herrero MT, SanMartín R, Domínguez E. New perpectives for iodine(III) reagents in (hetero)biaryl coupling reactions. Curr Org Chem, 2002, 6: 1433–1452

    CAS  Google Scholar 

  11. Wirth T. Hypervalent iodine chemistry in synthesis: Scope and new directioins. Angew Chem Int Ed, 2005, 44: 3656–3665

    CAS  Google Scholar 

  12. Ciufolini MA, Braun NA, Canesi S, Ousmer M, Chang J, Chai D. Oxidative amidation of phenols through the use of hypervalent iodine reagents: Development and applications. Synthesis, 2007, 24: 3759–3772

    Google Scholar 

  13. Zhdankin VV, Stang PJ. Chemistry of polyvalent iodine. Chem Rev, 2008, 108: 5299–5358

    CAS  Google Scholar 

  14. Zhdankin VV. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, i: 1–62

    Google Scholar 

  15. Pouységu L, Deffieux D, Quideau S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66: 2235–2261

    Google Scholar 

  16. Liang H, Ciufolini, MA. Synthetic aspects of the oxidative amidation of phenols. Tetrahedron, 2010, 66: 5884–5892

    CAS  Google Scholar 

  17. Samanta R, Antonchick AP. Metal-free oxidative C-H bond amination at ambient temperature. Synlett, 2012, 23: 809–813

    CAS  Google Scholar 

  18. Quideau S, Pouységu L, Deffieux D. Oxidative dearomatization of phenols: why, how and what for? Synlett, 2008, 4: 467–495

    Google Scholar 

  19. Traoré M, Ahmed-Ali S, Peuchmaur M, Wong YS. Hypervalent iodine( III)-mediated tandem oxidative reactions: Application for the synthesis of bioactive polyspirocyclohexa-2,5-dienones. Tetrahedron, 2010, 66: 5863–5872

    Google Scholar 

  20. Ding QP, Ye Y, Fan RH. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis, 2013, 45: 1–16

    CAS  Google Scholar 

  21. Lombardo L, Mander LN. Phenolic oxidative coupling with hypervalent iodine. A synthesis of 6a-epipretazettine. J Org Chem, 1983, 48: 2300–2302

    Google Scholar 

  22. Kita Y, Yakura T, Tohma H, Kikuchi K, Tamura Y. A synthetic approach to discorhabdin alkaloids: hypervalent iodine oxidation of p-substituted phenol derivatives to azacarbocyclic spirodienones. Tetrahedron Lett, 1989, 30: 1119–1120

    CAS  Google Scholar 

  23. Kita Y, Takada T, Ibaraki M, Gyoten M, Mihara S, Fujita S, Tohma H. An intramolecular cyclization of phenol derivatives bearing aminoquinones using a hypervalent iodine reagent. J Org Chem, 1996, 61: 223–227

    CAS  Google Scholar 

  24. Kita Y, Tohma H, Inagaki M, Hatanaka K, Kikuchi K, Yakura T. Hypervalent iodine oxidation of O-silylated phenol derivatives to azacarbocyclic spirodienones; synthetic approach to the anticancer marine alkaloid, discorhabdin C. Tetrahedron Lett, 1991, 32: 2035–2038

    CAS  Google Scholar 

  25. Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T. Total synthesis of discorhabdin C: A general aza spiro dienone formation from O-silylated phenol derivatives using a hypervalent iodine reagent. J Am Chem Soc, 1992, 114: 2175–2180

    CAS  Google Scholar 

  26. Tohama H, Harayama Y, Hashizume M, Iwata M, Egi M, Kita Y. Synthetic studies on the sulfur-cross-linked core of antitumor marine alkaloid, discorhabdins: Total synthesis of discorhabdin A. Angew Chem Int Ed, 2002, 41: 348–350

    Google Scholar 

  27. Tohama H, Harayama Y, Hashizume M, Iwata M, Kiyono Y, Egi M, Kita Y. The first total synthesis of discorhabdin A. J Am Chem Soc, 2003, 125: 11235–11240

    Google Scholar 

  28. Kita Y, Fujioka H. Enantioselective constructions of quaternary carbons and their application to the asymmetric total syntheses of fredericamycin A and discorhabdin A. Pure Appl Chem, 2007, 79: 701–713

    CAS  Google Scholar 

  29. Kita Y, Takada T, Gyoten M, Tohma H, Zenk MH, Eichhorn J. An oxidative intramolecular phenolic coupling reaction for the synthesis of amaryllidaceae alkaloids using a hypervalent iodine(III) reagent. J Org Chem, 1996, 61: 5857–5864

    CAS  Google Scholar 

  30. Kita Y, Arisawa M, Gyoten M, Nakajima M, Hamada R, Tohma H, Takada T. Oxidative intramolecular phenolic coupling reaction induced by a hypervalent iodine(III) reagent: Leading to galanthamintype amaryllidaceae alkaloids. J Org Chem, 1998, 63: 6625–6633

    CAS  Google Scholar 

  31. Node M, Kodama S, Hamashima Y, Baba T, Hamamichi N, Nishide K. An efficient synthesis of (+/−)-narwedine and (+/−)-galanthamine by an improved phenolic oxidative coupling. Angew Chem Int Ed, 2001, 40: 3060–3062

    CAS  Google Scholar 

  32. Kodama S, Hamashima Y, Nishide K, Node M. Total synthesis of (−)-galanthamine by remote asymmetric induction. Angew Chem Int Ed, 2004, 43: 2659–2661

    CAS  Google Scholar 

  33. Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK. A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: A new paradigm for molecular assembly. Chem Commun, 2006, 2566–2568

    Google Scholar 

  34. Baxendale IR, Ley SV, Nessi M, Piutti C. Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents. Tetrahedron, 2002, 58: 6285–6304

    CAS  Google Scholar 

  35. Kodama S, Takita H, Kajimoto T, Nishide K, Node M. Synthesis of amaryllidaceae alkaloids, siculine, oxocrinine, epicrinine, and buflavine. Tetrahedron, 2004, 60: 4901–4907

    CAS  Google Scholar 

  36. Hamamoto H, Anilkumar G, Tohma H, Kita Y. A novel and useful oxidative intramolecular coupling reaction of phenol ether derivatives on treatment with a combination of hypervalent iodine(III) reagent and heteropoly acid. Chem Eur J, 2002, 8: 5377–5383

    CAS  Google Scholar 

  37. Baxendale IR, Ley SV, Piutti C. Total synthesis of the amaryllidaceae alkaloid (+)-plicamine and its unnatural enantiomer by using solid-supported reagents and scavengers in a multistep sequence of reactions. Angew Chem Int Ed, 2002, 41: 2194–2197

    CAS  Google Scholar 

  38. Dohi T, Minamitsuji Y, Maruyama A, Hirose S, Kita Y. A new H2O2/acid anhydride system for the iodoarene-catalyzed C-C bondforming reactions of phenols. Org Lett, 2008, 10: 3559–3562

    CAS  Google Scholar 

  39. Yu ZS, Ju XH, Wang JY, Yu W. Iodobenzene-mediated intramolecular oxidative coupling of substituted 4-hydroxyphenyl-N-phenylbenzamides for the synthesis of spirooxindoles. Synthesis, 2011, 6, 860–866

    Google Scholar 

  40. Dohi T, Kato D, Hyodo R, Yamashita D, Shiro M, Kita Y. Discovery of stabilized bisiodonium salts as intermediates in the carbon-carbon bond formation of alkynes. Angew Chem Int Ed, 2011, 50: 3784–3787

    CAS  Google Scholar 

  41. Dohi T, Nakae T, Ishikado Y, Kato D, Kita Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org Biomol Chem, 2011, 9: 6899–6902

    CAS  Google Scholar 

  42. Kita Y, Gyoten M, Ohtsubo M, Tohma H, Takada T. Non-phenolic oxidative coupling of phenol ether derivatives using phenyliodine(III) bis(trifluoroacetate). Chem Commun, 1996, 1481–1482

    Google Scholar 

  43. Hamamoto H, Anilkumar G, Tohma H, Kita Y. A novel and efficient oxidative biaryl coupling reaction of phenol ether derivatives using a combination of hypervalent iodine(III) reagent and heteropoly acid. Chem Commun, 2002, 450–451

    Google Scholar 

  44. Taylor SR, Ung AT, Pyne SG, Skelton BW, White AH. Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers. Tetrahedron, 2007, 63: 11377–11385

    CAS  Google Scholar 

  45. Takada T, Arisawa M, Gyoten M, Hamada R, Tohma H, Kita Y. Oxidative biaryl coupling reaction of phenol ether derivatives using a hypervalent iodine(III) reagent. J Org Chem, 1998, 63: 7698–7706

    CAS  Google Scholar 

  46. Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(III) reagents. Tetrahedron, 2001, 57: 345–352

    CAS  Google Scholar 

  47. Moreno I, Tellitu I, Etayo J, SanMartín R, Domínguez E. Novel applications of hypervalent iodine: PIFA mediated synthesis of benzo[ c]phenanthiridines and benzo[c]phenanthridinones. Tetrahedron, 2001, 57: 5403–5411

    CAS  Google Scholar 

  48. Herrero MT, Tellitu I, Domínguez E, Hernández S, Moreno I, SanMartín R. A general and efficient PIFA mediated synthesis of heterocycle-fused quinolinone derivatives. Tetrahedron, 2002, 58: 8581–8589

    CAS  Google Scholar 

  49. Yu WQ, Du YF, Zhao K. PIDA-mediated oxidative C-C bond formation: novel synthesis of indoles from N-aryl enamines. Org Lett, 2009, 11: 2417–2420

    CAS  Google Scholar 

  50. Matcha K, Narayan R, Antonchick AP. Metal-free radical azidoarylation of alkenes: rapid access to oxindoles by cascade C-N and C-C bond-forming reactions. Angew Chem Int Ed, 2013, 52: 7985–7989

    CAS  Google Scholar 

  51. Tamura Y, Yakura T, Shirouchi Y, Haruta JI. Pummerer-type reactions of α-acylsulfides using phenyl iodosyl bis(trifluoroacetate). Chem Pharm Bull, 1986, 34: 1061–1066

    CAS  Google Scholar 

  52. Wang HM, Lin MC, Chen LC. Synthesis of 4H-pyrrolo[2,1-c][1,4] benzothiazines and N-methyl-1,3,4,5-tetra-hydro-2H-3-benzazepin-2-ones. Heterocycles, 1994, 38: 1519–1526

    CAS  Google Scholar 

  53. Arisawa M, Ramesh NG, Nakajima M, Tohma H, Kita Y. Hypervalent iodine(III)-induced intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl compounds: A convenient synthesis of benzannulated and spirobenzannulated compounds. J Org Chem, 2001, 66: 59–65

    CAS  Google Scholar 

  54. Walker SJ, Hart DJ. Synthesis of (−)-lapatin B. Tetrahedron Lett, 2007, 48: 6214–6216

    CAS  Google Scholar 

  55. Wang JW, Yuan YC, Xiong R, Zhang-Negrerie D, Du YF, Zhao K. Phenyliodine bis(trifluoroacetate)-mediated oxidative C-C bond formation: Synthesis of 3-hydroxy-2-oxindoles and spirooxindoles form anilides. Org Lett, 2012, 14: 2210–2213

    CAS  Google Scholar 

  56. Kita Y, Egi M, Okajima A, Ohtsubu M, Takada T, Tohma H. Hypervalent iodine(III) induced intramolecular cyclization of substituted phenol ethers bearing an alkyl azido sidechain-A novel synthesis of quinine imine ketals. Chem Commun, 1996, 1491–1492

    Google Scholar 

  57. Kita Y, Egi M, Ohtsubo M, Saiki T, Okajima A, Takada T, Tohma H. Hypervalent iodine(III)-induced intramolecular cyclization reaction of substituted phenol ethers with an alkyl azido side-chain: A novel and efficient synthesis of quinine imine derivatives. Chem Pharm Bull, 1999, 47: 241–245

    CAS  Google Scholar 

  58. Kita Y, Watanabe H, Egi M, Saiki T, Fukuoka Y, Tohma H. Novel and efficient synthesis of pyrroloiminoquinones using a hypervalent iodine(III) reagent. J Chem Soc, Perkin Trans 1, 1998, 635–636

    Google Scholar 

  59. Kita Y, Egi M, Takada T, Tohma H. Development of novel reactions using hypervalent iodine(III) reagents: Total synthesis of sulfur-containing pyrroloiminoquinone marine product, (+/-)-makaluvamine F. Synthesis, 1999, 5: 885–897

    Google Scholar 

  60. Prata JV, Clemente DTS, Prabhakar S, Lobo AM, Mourato I, Branco PS. Intramolecular addition of acyldiazenecarboxylates onto double bonds in the synthesis of heterocycles. J Chem Soc, Perkin Trans 1, 2002, 513–528

    Google Scholar 

  61. Kikugawa Y, Nagashima A, Sakamoto T, Miyazawa E, Shiiya M. Intramolecular cyclization with nitrenium ions generated by treatment of N-Acylaminophthalimides with hypervalent iodine compounds: formation of lactams and spiro-fused lactams. J Org Chem, 2003, 68: 6739–6744

    CAS  Google Scholar 

  62. Miyazawa E, Sakamoto T, Kikugawa Y. Synthesis of spiro-fused nitrogen heterocyclic compounds via N-methoxy-N-acylnitrenium ions using phenyliodine(III) bis(trifluoroacetate) in trifluoroethanol. Heterocycles, 2003, 59: 149–160

    CAS  Google Scholar 

  63. Wardrop DJ, Burge MS, Zhang WM, Ortíz JA. π-Face selective azaspirocyclization of ω-(methoxyphenyl)-N-methoxyalkylamindes. Tetrahedron Lett, 2003, 44: 2587–2591

    CAS  Google Scholar 

  64. Wardrop DJ, Burge MS. Nitrenium ion azaspirocyclization-spirodienone cleavage: A new synthetic strategy for the stereocontrolled preparation of highly substituted lactams and N-hydroxy lactams. J Org Chem, 2005, 70: 10271–10284

    CAS  Google Scholar 

  65. Miyazawa E, Sakamoto T, Kikugawa Y. Synthesis of spirodienones by intramolecular ipso-cyclization of N-methoxy-(4-halogenophenyl)-amides using [hydroxyl(tosyloxy)iodo]benzene in trifluoroethanol. J Org Chem, 2003, 68: 5429–5432

    CAS  Google Scholar 

  66. Wardrop DJ, Basak A. N-Methoxy-N-acylnitrenium ions: Application to the formal synthesis of (−)-TAN1251A. Org Lett, 2001, 3: 1053–1056

    CAS  Google Scholar 

  67. Wardrop DJ, Zhang WM. N-Methoxy-N-acylnitrenium ions: Application to the formal synthesis of (+/−)-desmethylamino FR901483. Org Lett, 2001, 3: 2353–2356

    CAS  Google Scholar 

  68. Wardrop DJ, Landrie CL, Ortíz JA. Total synthesis of the coccinellid alkaloid (+/−)-adalinine utilizing a nitrenium ion cyclization. Synlett, 2003, 9, 1352–1354

    Google Scholar 

  69. Wardrop DJ, Burge M. Total synthesis of (−)-dysibetaine via a nitrenium ion cyclization-dienone cleavage strategy. Chem Commun, 2004, 1230–1231

    Google Scholar 

  70. Wardrop DJ, Zhang WM, Landrie CL. Stereoselective nitrenium ion cyclizations: Asymmetric synthesis of the (+)-Kishi lactam and an intermediate for the preparation of fasicularin. Tetrahedron Lett, 2004, 45: 4229–4231

    CAS  Google Scholar 

  71. Dohi T, Maruyama A, Minamitsuji Y, Takenaga N, Kita Y. First hypervalent iodine(III)-catalyzed C-N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem Commun, 2007, 1224–1226

    Google Scholar 

  72. Dohi T, Takenaga N, Fukushima KI, Uchiyama T, Kato D, Shiro M, Fujioka H, Kita Y. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem Commun, 2010, 46: 7697–7699

    CAS  Google Scholar 

  73. Dohi T, Mochizuki E, Yamashita D, Miyazaki K, Kita Y. Efficient oxidative spirolactamization by μ-oxo-bridged heterocyclic hypervalent iodine compound. Heterocycles, 2014, 88: ASAP

    Google Scholar 

  74. Canesi S, Belmont P, Bouchu D, Rousset L, Ciufolini MA. Efficient oxidative spirocyclization of phenolic sulfonamides. Tetrahedron Lett, 2002, 43: 5193–5195

    CAS  Google Scholar 

  75. Liang H, Ciufolini MA. Oxidative spirocyclization of phenolic sulfonamides: Scope and applications. Chem Eur J, 2010, 16: 13262–13270

    CAS  Google Scholar 

  76. Canesi S, Bouchu D, Ciufolini MA. Fully stereocontrolled total syntheses of (−)-cylindricine C and (−)-2-epicylindricine C: A departure in sulfonamide chemistry. Angew Chem Int Ed, 2004, 43: 4336–4338

    CAS  Google Scholar 

  77. Liang H, Ciufolini MA. Tandem phenolic oxidative amidation-intramolecular Diels-Alder reaction: An approach to the himandrine core. Org Lett, 2010, 12: 1760–1763

    CAS  Google Scholar 

  78. Braun NA, Ciufolini MA, Peters K, Peters EM. Synthesis of spirolactams from tyrosine amides and related substances. Tetrahedron Lett, 1998, 39: 4667–4670

    CAS  Google Scholar 

  79. Ousmer M, Braun NA, Ciufolini MA. Total synthesis of FR901483. Org Lett, 2001, 3: 765–767

    CAS  Google Scholar 

  80. Ousmer M, Braun NA, Bavoux C, Perrin M, Ciufolini MA. Total synthsis of tricyclic azaspirane derivatives of tyrosine: FR901483 and TAN1251C. J Am Chem Soc, 2001, 123: 7534–7538

    CAS  Google Scholar 

  81. Ciufolini MA, Canesi S, Ousmer M, Braun NA. Synthetic ventures inspired by biosynthetic hypotheses: the evolution of a method for the oxidative amidation of phenols. Tetrahedron, 2006, 62: 5318–5337

    CAS  Google Scholar 

  82. Scheffler G, Seike H, Sorensen EJ. An enantiospecific synthesis of the potent immunosuppressant FR901483. Angew Chem Int Ed, 2000, 39: 4593–4596

    CAS  Google Scholar 

  83. Mizutani H, Takayama J, Soeda Y, Honda T. Facile synthesis of enantiopure (−)-TAN1251A. Tetrahedron Lett, 2002, 43: 2411–2414

    CAS  Google Scholar 

  84. Mizutani H, Takayama J, Soeda Y, Honda T. A formal synthesis of a muscarinic M1 receptor antagonist, (−)-TAN1251A. Heterocycles, 2004, 62: 343–355

    CAS  Google Scholar 

  85. Mizutani H, Takayama J, Honda T. Enantiospecific total synthesis of TAN1251C and TAN1251D. Synlett, 2005, 2: 328–330

    Google Scholar 

  86. Kikugawa Y, Kawase M. An electrophilic aromatic substitution by N-methoxyamides via hypervalent iodine intermediates. Chem Lett, 1990, 581–582

    Google Scholar 

  87. Romero AG, Darlington WH, Jon Jacobsen E, Mickelson JW. Oxidative cyclization of acyclic ureas with bis(trifluoroacetoxy)-iodobenzene to generate N-substituted 2-benzimidazolinones. Tetrahedron Lett, 1996, 37: 2361–2364

    CAS  Google Scholar 

  88. Herrero MT, Tellitu I, Domínguez E, Moreno I, SanMartín R. A novel and efficient iodine(III)-mediated access to 1,4-benzodiazepin-2-ones. Tetrahedron Lett, 2002, 43: 8273–8275

    CAS  Google Scholar 

  89. Misu Y, Togo H. Novel preparation of 2,1-benzothiazine derivatives from sulfonamides with [hydroxyl(tosyloxy)iodo]arenes. Org Biomol Chem, 2003, 1: 1342–1346

    CAS  Google Scholar 

  90. Correa A, Tellitu I, Domínguez E, Moreno I, SanMartín R. An efficient, PIFA mediated approach to benzo-, naphtha-, and heterocyclefused pyrrolo[2,1-c][1,4]diazepines. An advantageous access to the antitumor antibiotic DC-81. J Org Chem, 2005, 70: 2256–2264

    CAS  Google Scholar 

  91. Malamidou-Xenikaki E, Spyroudis S, Tsanakopoulou M, HadjipavlouLitina D. A convenient approach to fused indeno-1,4-diazepinones through hypervalent iodine chemistry. J Org Chem, 2009, 74: 7315–7321

    CAS  Google Scholar 

  92. Herrero MT, Tellitu I, Hernández S, Domínguez E, Moreno I, SanMartín R. Novel applications of the hypervalent iodine chemistry. Synthesis of thiazolo-fused quinolinones. ARKIVOC, 2002, v: 31–37

    Google Scholar 

  93. Serna S, Tellitu I, Domínguez E, Moreno I, SanMartín R. Iodine( III)-mediated aromatic amidation vs olefin amidohydroxylation. The amide N-substituent makes the difference. Tetrahedron, 2004, 60: 6533–6539

    CAS  Google Scholar 

  94. Correa A, Tellitu I, Domínguez E, SanMartín R. A metal-free approach to the synthesis of indoline derivatives by a phenyliodine(III) bis(trifluoroacetate)-mediated amidohydroxylation reaction. J Org Chem, 2006, 71: 8316–8319

    CAS  Google Scholar 

  95. Tellitu I, Urrejola A, Serna S, Moreno I, Herrero MT, Domínguez E, SanMartín R, Correa A. On the phenyliodine(III)-bis(trifluoroacetate)-mediated olefin amidohydroxylation reaction. Eur J Org Chem, 2007, 3: 437–444

    Google Scholar 

  96. Tellitu I, Serna S, Herrero MT, Moreno I, Domínguez E, SanMartín R. Intramolecular PIFA-mediated alkyne amidation and carboxylation reaction. J Org Chem, 2007, 72: 1526–1529

    CAS  Google Scholar 

  97. Moroda A, Togo H. Iodobenzene-catalyzed preparation of 3,4-dihydro-1H-2,1-benzothiazine 2,2-dioxides from 2-aryl-N-methoxyethanesulfonamides with m-chloroperoxybenzoic acid. Synthesis, 2008, 8: 1257–1261

    Google Scholar 

  98. Ishiwata Y, Togo H. Ion-supported PhI-catalyzed cyclization of N-methoxy-2-arylethane-sulfonamides with mCPBA. Tetrahedron Lett, 2009, 50: 5354–5357

    CAS  Google Scholar 

  99. Romero AG, Darlington WH, McMillan MW. Synthesis of the selective D2 receptor agonist PNU-95666E from D-phenylalanine using a sequential oxidative cyclization strategy. J Org Chem, 1997, 62: 6582–6587

    CAS  Google Scholar 

  100. Correa A, Herrero MT, Tellitu I, Domínguez E, Moreno I, SanMartín R. An alternative approach towards novel heterocycle-fused 1,4-diazepin-2-ones by an aromatic amidation protocol. Tetrahedron, 2003, 59: 7103–7110

    CAS  Google Scholar 

  101. Chang CY, Yang TK. Synthesis of optically active α-aminobenzolactam via an oxidative-cyclization reaction. Tetrahedron: Asymmetry, 2003, 14: 2081–2085

    CAS  Google Scholar 

  102. Cho SH, Yoon J, Chang S. Intramolecular oxidative C-N bond formation for the synthesis of carbazoles: comparison of reactivity between the copper-catalyzed and metal-free conditions. J Am Chem Soc, 2011, 133: 5996–6005

    CAS  Google Scholar 

  103. Antonchick AP, Samanta R, Kulikov K, Lategahn J. Organocatalytic, oxidative, intramolecular C-H bond amination and metal-free cross-amination of unactivated arenes at ambient temperature. Angew Chem Int Ed, 2011, 50: 8605–8608

    CAS  Google Scholar 

  104. Serna S, Tellitu I, Domínguez E, Moreno I, SanMartín R. A new and practical PIFA-promoted olefin amidohydroxylation: Six-versus five-membered ring formation. Tetrahedron Lett, 2003, 44: 3483–3486

    CAS  Google Scholar 

  105. Wardrop DJ, Bowen EG, Forslund RE, Sussman AD, Weerasekera SL. Intramolecular oxamidation of unsaturated O-alkyl hydroxamates: A remarkable versatile entry to hydroxyl lactams. J Am Chem Soc, 2010, 132: 1188–1189

    CAS  Google Scholar 

  106. Tsukamoto M, Murata K, Sakamoto T, Saito S, Kikugawa Y. Synthesis of nitrogen heterocycles by intramolecular cyclization of alkenyl N-acylaminophthalimides using phenyliodine(III) bis(trifluoroacetate) (PIFA). Heterocycles, 2009, 75: 1133–1149

    Google Scholar 

  107. Lovick HM, Michael FE. Metal-free highly regioselective aminotrifluoroacetoxylation of alkenes. J Am Chem Soc, 2010, 132: 1249–1251

    CAS  Google Scholar 

  108. Fan RH, Wen FQ, Qin LH, Pu DM, Wang B. PhI(OAc)2 induced intramolecular oxidative bromocyclization of homoallylic sulfonamides with KBr as the bromine source. Tetrahedron Lett, 2007, 48: 7444–7447

    CAS  Google Scholar 

  109. Ramsden CA, Rose HL. Rearrangement and cyclo-α-elimination of N-substituted amidines using (diacetoxyiodo)benzene. J Chem Soc, Perkin Trans 1, 1995, 615–617

    Google Scholar 

  110. Ramsden CA, Rose HL. Oxidative rearrangement and cyclisation of N-substituted amidines using iodine(III) reagents and the influence of leaving group on mode of reaction. J Chem Soc, Perkin Trans 1, 1997, 2319–2327

    Google Scholar 

  111. Huang JB, He YM, Wang Y, Zhu Q. Synthesis of benzimidazoles by PIDA-promoted direct C(sp2)-H imidation of N-arylamidines. Chem Eur J, 2012, 18: 13964–13967

    CAS  Google Scholar 

  112. Zhu JT, Xie HB, Chen ZX, Li S, Wu YM. Synthesis of N-substituted 2-fluoromethylbenzimidazoles via bis(trifluoroacetoxy)iodobenzene-mediated intramolecular cyclization of N,N’-disubstituted fluoroethanimidamides. Synlett, 2009, 20: 3299–3302

    Google Scholar 

  113. Kutsumura N, Kunimatsu S, Kagawa K, Otani T, Saito T. Synthesis of benzimidazole-fused heterocycles by intramolecular oxidative C-N bond formation using hypervalent iodine reagents. Synthesis, 2011, 20: 3235–3240

    Google Scholar 

  114. Alla SK, Kumar RK, Sadhu P, Punniyamurthy T. Iodobenzene catalyzed C-H amination of N-substituted amidines using m-chloroper-benzoic acid. Org Lett, 2013, 15: 1334–1337

    CAS  Google Scholar 

  115. He YM, Huang JB, Liang DD, Liu LY, Zhu Q. C-H cycloamination of N-aryl-2-aminopyridines and N-arylamidines catalyzed by an in situ generated hypervalent iodine(III) reagent. Chem Commun, 2013, 49: 7352–7354

    CAS  Google Scholar 

  116. Aggarwal R, Sumran G, Saini A, Singh SP. Hypervalent iodine oxidation of benzyl-α-arylimino oximes: An efficient synthesis of 2,3-diphenylquinoxaline-1-oxides. Tetrahedron Lett, 2006, 47: 4969–4971

    CAS  Google Scholar 

  117. Du YF, Liu RH, Linn G, Zhao K. Synthesis of N-substituted indole derivatives via PIFA-mediated intramolecular cyclization. Org Lett, 2006, 8: 5919–5922

    CAS  Google Scholar 

  118. Ban X, Pan Y, Lin YF, Wang SQ, Du YF, Zhao K. Synthesis of carbazolones and 3-acetylindoles via oxidative C-N bond formation through PIFA-mediated annulations of 2-aryl enaminones. Org Biomol Chem, 2012, 10: 3606–3609

    CAS  Google Scholar 

  119. Li XX, Du YF, Liang ZD, Li XK, Pan Y, Zhao K. Simple conversion of enamines to 2H-azirines and their rearrangements under thermal conditions. Org Lett, 2009, 11: 2643–2646

    CAS  Google Scholar 

  120. Prakash O, Kumar R, Sharma D, Naithani R, Kumar R. Organoiodine(III)-mediated efficient synthesis of new 3,9-diaryl-bis-1,2,4-trizolo[4,3-a][4,3-c]pyrimidines. Heteratom Chem, 2006, 17: 653–655

    CAS  Google Scholar 

  121. Prakash O, Aneja DK, Hussain K, Kumar R, Arora S, Sharma C, Aneja KR. Organoiodine(III) mediated synthesis of novel symmetrical bis([1,2,4]triazolo)[3,4-a:4′,3′-c]phthalazines as antibacterial and antifungal agents. J Heterocycl Chem, 2012, 49: 1091–1097

    CAS  Google Scholar 

  122. Sadana AK, Mirza Y, Aneja KR, Prakash O. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a]pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo[4,3-a]-quinolines as antibacterial agents. Eur J Med Chem, 2003, 38: 533–536

    CAS  Google Scholar 

  123. Prakash O, Bhardwaj V, Kumar R, Tyagi P, Aneja KR. Organoiodine( III) mediated synthesis of 3-aryl/hetryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines as antibacterial agents. Eur J Med Chem, 2004, 39: 1073–1077

    CAS  Google Scholar 

  124. Prakash O, Kumar R, Kumar R, Tyagi P, Kuhad RC. Organoiodine( III) mediated synthesis of 3,9-diaryl and 3,9-difuryl-bis-1,2,4-triazolo-[4,3-a][4,3-c]pyrimidines as antibacterial agents. Eur J Med Chem, 2007, 42: 868–872

    CAS  Google Scholar 

  125. Kumar R, Nair RR, Dhiman SS, Sharma J, Prakash O. Organoiodine(III)-mediated synthesis of 3-aryl/heteroaryl-5,7-dimethyl-1,2,4-triazolo-[4,3-c]pyrimidines as antibacterial agents. Eur J Med Chem, 2009, 44: 2260–2264

    CAS  Google Scholar 

  126. Das B, Srinivas Y, Holla H, Krishnaiah M, Narender R. Hypervalent iodine-mediated efficient synthesis of imidazoles. Chem Lett, 2007, 1270–1271

    Google Scholar 

  127. Du LH, Wang YG. A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. Synthesis, 2007, 5: 675–678

    Google Scholar 

  128. Kumar A, Maurya RA, Ahmad P. Diversity oriented synthesis of benzimidazole and benzoxa/(thia)zole libraries through polymersupported hypervalent iodine reagent. J Comb Chem, 2009, 11: 198–201

    CAS  Google Scholar 

  129. Li JY, Liang JL, Chan PWH, Che CM. Aziridination of alkenes with N-substituted hydrazines mediated by iodobenzene diacetate. Tetrahedron Lett, 2004, 45: 2685–2688

    CAS  Google Scholar 

  130. Krasnova LB, Hili RM, Chernoloz OV, Yudin AK. Phenyliodine(III) diacetate as a mild oxidant for aziridination of olefins and imination of sulfoxides with N-aminophthalimide. ARKIVOC, 2005, iv: 26–38

    Google Scholar 

  131. Krasnova LB, Yudin AK. Highly regioselective transformation of alkenyl bromides into α-bromoaziridines and α-bromohydrazones. Org Lett, 2006, 8: 2011–2014

    CAS  Google Scholar 

  132. Richarson RD, Desaize M, Wirth T. Hypervalent iodine-mediated aziridination of alkenes: Mechanistic insights and requirements for catalysis. Chem Eur J, 2007, 13: 6745–6754

    Google Scholar 

  133. Moriarty RM, Tyagi S. Metal-free intramolecular aziridination of alkenes using hypervalent iodine based sulfonyliminoiodanes. Org Lett, 2010, 12: 364–366

    CAS  Google Scholar 

  134. Deng QH, Wang JC, Xu ZJ, Zhou CY, Che CM. Metal-free intramolecular aziridination of allylic carbamates mediated by hypervalent iodine compounds. Synthesis, 2011, 18: 2959–2967

    Google Scholar 

  135. Ueno M, Nabana T, Togo H. Novel oxidative α-tosyloxylation of alcohols with iodosylbenzene and p-toluenesulfonic acid and its synthetic use for direct preparation of heteroaromatics. J Org Chem, 2003, 68: 6424–6426

    CAS  Google Scholar 

  136. Aggarwal R, Sumran G. Hypervalent iodine in the synthesis of bridgehead heterocycles: A facile route to the synthesis of 6-arylimidazo[2,1-b]thiazoles using [hydroxyl(tosyloxy)iodo]benzene. Synth Commun, 2006, 36: 875–879

    CAS  Google Scholar 

  137. Stang PJ, Williamson BL, Zhdankin VV. Preparation of functionalized alkynyl(phenyl)iodonium salts via a novel iodonium-transfer process between alkynylstannanes and PhI+CN-OTf. J Am Chem Soc, 1991, 113: 5871–5873

    Google Scholar 

  138. Feldman KS, Skoumbourdis AP. Extending pummerer reaction chemistry. Synthesis of (+/−)-dibromophakellstatin by oxidative cyclization of an imidazole derivative. Org Lett, 2005, 7: 929–931

    CAS  Google Scholar 

  139. Lu JM, Tan XH, Chen C. Palladium-catalyzed direct functionalization of imidazolinone: Synthesis of dibromophakellstatin. J Am Chem Soc, 2007, 129: 7768–7769

    CAS  Google Scholar 

  140. Ma ZQ, Lu JM, Wang X, Chen C. Revisiting the Kinnel-Scheuer hypothesis for the biosynthesis of palau’amine. Chem Commun, 2011, 47: 427–429

    CAS  Google Scholar 

  141. Kim HJ, Cho SH, Chang S. Intramolecular oxidative diamination and aminohydroxylation of olefins under metal-free conditions. Org Lett, 2012, 14: 1424–1427

    CAS  Google Scholar 

  142. Farid U, Wirth T. Highly stereoselective metal-free oxyaminations using chiral hypervalent iodine reagents. Angew Chem Int Ed, 2012, 51: 3462–3465

    CAS  Google Scholar 

  143. Fan RH, Ye Y. Iodobenzene diacetate/tetrabutylammonium iodideinduced aziridination of N-tosylimines with activated methylene compounds under mild conditions. Adv Synth Catal, 2008, 350: 1526–1530

    CAS  Google Scholar 

  144. Fan RH, Wang LF, Ye Y, Zhang J. Facile iodine(III)-induced oxidative cycloaddition of N-sulfonyl imines with methylene compounds under neutral conditions. Tetrahedron Lett, 2009, 50: 3857–3859

    CAS  Google Scholar 

  145. Fan RH, Wang H, Ye Y, Gan JH. PhIO/Bu4NI mediated oxidative cyclization of amidoalkylation adducts for the synthesis of N-benzoyl aziridines and oxazolines. Tetrahedron Lett, 2010, 51: 453–456

    CAS  Google Scholar 

  146. Ye Y, Wang H, Fan RH. Stereoselective construction of highly functionalized azetidines via a [2+2]-cycloaddition. Org Lett, 2010, 12: 2802–2805

    CAS  Google Scholar 

  147. Sun Y, Fan RH. Construction of 3-oxyindoles via hypervalent iodine mediated tandem cyclization-acetoxylation of o-acyl anilines. Chem Commun, 2010, 46: 6834–6836

    CAS  Google Scholar 

  148. Mao LJ, Li Y, Xiong T, Sun K, Zhang Q. Synthesis of tetramic acid derivatives via intramolecular sp3C-H amination mediated by hypervalent iodine(III) reagents/brønsted acids. J Org Chem, 2013, 78: 733–737

    CAS  Google Scholar 

  149. Serna S, Tellitu I, Domínguez E, Moreno I, SanMartín R. Expeditious approach to 5-aroyl-pyrrolidinones by a novel PIFA-mediated alkyne amidation reaction. Org Lett, 2005, 7: 3073–3076

    CAS  Google Scholar 

  150. Tellitu I, Serna S, Domínguez E. Application of the PIFA-mediated alkyne amidation reaction to the formal synthesis of (+/−)-clausenamide. ARKIVOC, 2010, iii: 7–14

    Google Scholar 

  151. Pardo LM, Tellitu I, Domínguez E. A versatile PIFA-mediated approach to structurally diverse pyrrolo(benzo)diazepines from linear alkynylamides. Tetrahedron, 2010, 66: 5811–5818

    CAS  Google Scholar 

  152. Pardo LM, Tellitu I, Domínguez E. A quick synthesis of 1-arylpyrrolopyrazinones from linear alkynylamide derivatives. Synthesis, 2010, 6: 971–978

    Google Scholar 

  153. Tamura Y, Yakura T, Haruta J, Kita Y. Hypervalent iodine oxidation of p-alkoxyphenols and related compounds: A general route to p-benzoquinone monoacetals and spiro lactones. J Org Chem, 1987, 52: 3927–3930

    CAS  Google Scholar 

  154. Hara H, Inoue T, Nakamura H, Endoh M, Hoshino O. A novel feature in phenyliodine diacetate oxidation. Tetrahedron Lett, 1992, 33: 6491–6494

    CAS  Google Scholar 

  155. Ley SV, Thomas AW, Finch H. Polymer-supported hypervalent iodine reagents in ‘clean’ organic synthesis with potential application in combinatorial chemistry. J Chem Soc, Perkin Trans 1, 1999, 669–671

    Google Scholar 

  156. Hata K, Hamamoto H, Shiozaki Y, Kita Y. A new synthesis of dienone lactones using a combination of hypervalent iodine(III) reagent and heteropoly acid. Chem Commun, 2005, 2465–2467

    Google Scholar 

  157. Rao AVR, Gurjar MK, Sharma PA. Studies directed toward the total synthesis of aranorosin. Tetrahedron Lett, 1991, 43: 6613–6616

    Google Scholar 

  158. McKillop A, McLaren L, Taylor RJK, Watson RJ, Lewis NJ. Synthetic studies towards aranorosin. Synlett, 1992, 3: 201–203

    Google Scholar 

  159. Wipf P, Kim Y. Stereoselective synthesis of the functionalized spirocyclic core of aranorosin. J Org Chem, 1993, 58: 1644–1650

    Google Scholar 

  160. Wipf P, Kim Y, Fritch PC. Total synthesis and structure assignment of the antitumor antibiotic aranorosin. J Org Chem, 1993, 58: 7195–7203

    CAS  Google Scholar 

  161. McKillop A, McLaren L, Taylor RJK, Watson RJ, Lewis NJ. The total synthesis of the diepoxycyclohexanone antibiotic aranorosin and novel synthetic analogues. J Chem Soc, Perkin Trans 1, 1996, 1385–1393

    Google Scholar 

  162. Ye Y, Zhang L, Fan RH. Application of dearomatization strategy on the synthesis of furoquinolinone and angelicin derivatives. Org Lett, 2012, 14: 2114–2117

    CAS  Google Scholar 

  163. Drutu I, Njardarson JT, Wood JL. Reactive dienes: intramolecular aromatic oxidation of 3-(2-hydroxyphenyl)-propionic acids. Org Lett, 2002, 4: 493–496

    CAS  Google Scholar 

  164. Cook SP, Danishefsky SJ. An interesting issue of Diels-Alder selectivity discovered En route to 11-O-debenzoyltashironin. Org Lett, 2006, 8: 5693–5695

    CAS  Google Scholar 

  165. Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroperbenzoic acid as a cooxidant. Angew Chem Int Ed, 2005, 44: 6193–6196

    CAS  Google Scholar 

  166. Minamitsuji Y, Kato D, Fujioka H, Dohi T, Kita Y. Organoiodine-catalyzed oxidative spirocyclization of phenols using peracetic acid as a green and economic terminal oxidant. Aust J Chem, 2009, 62: 648–652

    CAS  Google Scholar 

  167. Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew Chem Int Ed, 2008, 47: 3787–3790

    CAS  Google Scholar 

  168. Uyanik M, Yasui T, Ishihara K. Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine( III) species. Angew Chem Int Ed, 2010, 49: 2175–2177

    CAS  Google Scholar 

  169. Uyanik M, Yasui T, Ishihara K. Chiral hypervalent iodine-catalyzed enantioselective oxidative Kita spirolactonization of 1-naphthol derivatives and one-pot diastereo-selective oxidation to epoxyspirolactones. Tetrahedron, 2010, 66: 5841–5851

    CAS  Google Scholar 

  170. Dohi T, Takenaga N, Nakae T, Toyoda Y, Yamasaki M, Shiro M, Fujioka H, Maruyama A, Kita Y. Asymmetric dearomatizing spirolactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species. J Am Chem Soc, 2013, 135(11): 4558–4566

    CAS  Google Scholar 

  171. Pelter A, Hussain A, Smith G, Ward RS. The synthesis of 8a-methoxy-2H,6H-Chromen-6-ones and corresponding 2H-chromenes by a unique process utilising phenolic oxidation. Tetrahedron, 1997, 53: 3879–3916

    CAS  Google Scholar 

  172. Wipf P, Jung JK, Rodríguez S, Lazo JS. Synthesis and biological evaluation of deoxypreussomerin A and palmarumycin CP1 and related naphthoquinone spiroketals. Tetrahedron, 2001, 57: 283–296

    CAS  Google Scholar 

  173. Quideau S, Lebon M, Lamidey AM. Enantiospecific synthesis of the antituberculosis marine sponge metabolite (+)-puupehenone. The arenol oxidative activation route. Org Lett, 2002, 4: 3975–3978

    CAS  Google Scholar 

  174. Wood JL, Graeber JK, Njardarson JT. Application of phenolic oxidation chemistry in synthesis: Preparation of the BCE ring system of ryanodine. Tetrahedron, 2003, 59: 8855–8858

    CAS  Google Scholar 

  175. Simmons EM, Hardin AR, Guo XL, Sarpong R. Rapid construction of the cortistatin pentacyclic core. Angew Chem Int Ed, 2008, 47: 6650–6653

    CAS  Google Scholar 

  176. Liu LZ, Gao YX, Che C, Wu N, Wang DZG, Li CC, Yang Z. A model study for the concise construction of the oxapentacyclic core of cortistatins through intramolecular Diels-Alder and oxidative dearomatization-cyclization reactions. Chem Commun, 2009, 662–664

    Google Scholar 

  177. Dai MJ, Danishefsky SJ. An oxidative dearomatization cyclization model for cortistatin A. Heterocycles, 2009, 77: 157–161

    CAS  Google Scholar 

  178. Pouységu L, Chassaing S, Dejugnac D, Lamidey AM, Miqueu K, Sotiropoulos JM, Quideau S. Highly diastereoselective synthesis of orthoquinone monoketals through λ3-iodane-mediated oxidative dearomatization of phenols. Angew Chem Int Ed, 2008, 47: 3552–3555

    Google Scholar 

  179. Pouységu L, Sylla T, Garnier T, Rojas L, Charris J, Deffieux D, Quideau S. Hypervalent iodine-mediated oxygenative phenol dearomatization reactions. Tetrahedron, 2010, 66: 5908–5917

    Google Scholar 

  180. Kacan M, Koyuncu D, McKillop A. Intramolecular oxidative cyclisation of 1-(4-hydroxyaryl)-2-ketoximes 4-HOArCH2C(=NOH)R with phenyliodine(III) bis(trif1uoroacetate). J Chem Soc, Perkin Trans 1, 1993, 1771–1772

    Google Scholar 

  181. Murakata M, Yamada K, Hoshino O. Oxidative cyclisation of o-phenolic oxime-acid derivatives using hypervalent iodine reagent: asymmetric induction at the γ-position to the carbonyl group of chiral o-phenolic oxime-ester. J Chem Soc, Perkin Trans 1, 1994, 443–444

    Google Scholar 

  182. Murakata M, Yamada K, Hoshino O. Oxidative cyclisation of o-phenolic oxime-acid derivatives using phenyliodonium diacetate: Synthesis of spiroisoxazoline derivatives. Tetrahedron, 1996, 52: 14713–14722

    CAS  Google Scholar 

  183. Boehlow TR, Harburn JJ, Spilliing CD. Approaches to the synthesis of some tyrosine-derived marine sponge metabolites: synthesis of verongamine and purealidin N. J Org Chem, 2001, 66: 3111–3118

    CAS  Google Scholar 

  184. Kita Y, Tohma H, Kikuchi K, Inagaki M, Yakura T. Hypervalent iodine oxidation of N-acyltyramines: Synthesis of quinol ethers, spirohexadienones, and hexahydroindol-6-ones. J Org Chem, 1991, 56: 435–438

    CAS  Google Scholar 

  185. Pitsinos EN, Cruz A. Short and efficient route to the fully functionalized polar core of scyphostatin. Org Lett, 2005, 7: 2245–2248

    CAS  Google Scholar 

  186. Mejorado LH, Hoarau C, Pettus TRR. Diastereoselective dearomatization of resorcinols directed by a lactic acid tether: Unprecedented enantioselective access to p-quinols. Org Lett, 2004, 6: 1535–1538

    CAS  Google Scholar 

  187. Van De Water RW, Hoarau C, Pettus TRR. Oxidative dearomatization of resorcinol derivatives: Useful conditions leading to valuable cyclohexa-2,5-dienones. Tetrahedron Lett, 2003, 44: 5109–5113

    Google Scholar 

  188. Hoarau C, Pettus TRR. General synthesis for chiral 4-alkyl-4-hydroxycyclohexenones. Org Lett, 2006, 8: 2843–2846

    CAS  Google Scholar 

  189. Mejorado LH, Pettus TRR. Total synthesis of (+)-rishirilide B: Development and application of general processes for enantioselective oxidative dearomatization of resorcinol derivatives. J Am Chem Soc, 2006, 128: 15625–15631

    CAS  Google Scholar 

  190. Wenderski TA, Huang SL, Pettus TRR. Enantioselective total synthesis of all of the known chiral cleroindicins (C-F): Clarification among optical rotations and assignments. J Org Chem, 2009, 74: 4104–4109

    CAS  Google Scholar 

  191. Wenderski TA, Hoarau C, Mejorado L, Pettus TRR. Dearomatization applications of I(III) reagents and some unusual reactivity amongst resorcinol derived cyclohexadienones. Tetrahedron, 2010, 66: 5873–5883

    CAS  Google Scholar 

  192. Marsini MA, Huang YD, Van De Water RW, Pettus TRR. Synthesis of resorcinol derived spironitronates. Org Lett, 2007, 9: 3229–3232

    CAS  Google Scholar 

  193. Wong YS. Synthesis of (+/−)-aculeatins A and B. Chem Commun, 2002, 686–687

    Google Scholar 

  194. Traoré M, Maynadier M, Souard F, Choisnard L, Vial H, Wong YS. Forming spirocyclohexa-dienone-oxocarbenium cation species in the biomimetic synthesis of amomols. J Org Chem, 2011, 76: 1409–1417

    Google Scholar 

  195. Falomir E, Álvarez-Bercedo P, Carda M, Marco JA. Enantioselective synthesis and absolute configurations of aculeatins A and B. Tetrahedron Lett, 2005, 46: 8407–8410

    CAS  Google Scholar 

  196. Álvarez-Bercedo P, Falomir E, Carda M, Marco JA. Enantioselective synthesis and absolute configurations of aculeatins A, B, D, and 6-epi-aculeatin D. Tetrahedron, 2006, 62: 9641–9649

    Google Scholar 

  197. Peuchmaur M, Wong YS. Diastereodivergent strategies for the synthesis of homochiral aculeatins. J Org Chem, 2007, 72: 5374–5379

    CAS  Google Scholar 

  198. Peuchmaur M, Saïdani N, Botté C, Maréchal E, Vial H, Wong YS. Enhanced antimalarial activity of novel synthetic aculeatin derivatives. J Med Chem, 2008, 51: 4870–4873

    CAS  Google Scholar 

  199. Peuchmaur M, Wong YS. Studies towards the synthesis of aculeatin C. Synlett, 2007, 18: 2902–2906

    Google Scholar 

  200. Baldwin JE, Adlington RM, Sham VWW, Marquez R, Bulger PG. Biomimetic synthesis of (+/−)-aculeatin D. Tetrahedron, 2005, 61: 2353–2363

    CAS  Google Scholar 

  201. Ngatimin M, Frey R, Andrews C, Lupton DW, Hutt OE. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chem Commun, 2011, 47: 11778–11780

    CAS  Google Scholar 

  202. Hamamoto H, Hata K, Nambu H, Shiozaki Y, Tohma H, Kita Y. A novel and direct synthesis of chroman derivatives using a hypervalent iodine(III) reagent. Tetrahedron Lett, 2004, 45: 2293–2295

    CAS  Google Scholar 

  203. Miyamoto K, Hirobe M, Saito M, Shiro M, Ochiai M. One-pot regioselective synthesis of chromanyl(phenyl)-λ3-iodanes: Tandem oxidative cyclization and λ3-iodanation of 3-phenylpropanols. Org Lett, 2007, 9: 1995–1998

    CAS  Google Scholar 

  204. Gu YH, Xue K. Direct oxidative cyclization of 3-arylpropionic acids using PIFA or oxone: Synthesis of 3,4-dihydrocoumarins. Tetrahedron Lett, 2010, 51: 192–196

    CAS  Google Scholar 

  205. Li JM, Chen HY, Zhang-Negrerie D, Du YF, Zhao K. Synthesis of coumarins via PIDA/I2-mediated oxidative cyclization of substituted phenylacrylic acids. RSC Adv, 2013, 3: 4311–4320

    CAS  Google Scholar 

  206. Yu ZS, Ma LJ, Yu W. Phenyliodine bis(trifluoroacetate) mediated intramolecular oxidative coupling of electron-rich N-phenyl benzamides. Synlett, 2012, 23: 1534–1540

    CAS  Google Scholar 

  207. Shah M, Taschner MJ, Koser GF, Rach NL. Tosyloxylactonization of alkenoic acids with [hydroxyl(tosyloxy)iodo]benzene. Tetrahedron Lett, 1986, 27: 4557–4560

    CAS  Google Scholar 

  208. Koser GF, Lodaya JS, Ray DG, Kokil PB. Direct α-phosphoryloxylation of ketones and phosphoryloxylactonization of pentenoic acids with [hydroxy((bis(phenyloxy)phosphoryl)oxy)-iodo]benzene. J Am Chem Soc, 1988, 110: 2987–2988

    CAS  Google Scholar 

  209. Braddock DC, Cansell G, Hermitage SA, White AJP. Bromoiodinanes with an I(III)-Br bond: preparation, X-ray crystallography and reactivity as electrophilic brominating agents. Chem Commun, 2006, 1442–1444

    Google Scholar 

  210. Braddock DC, Cansell G, Hermitage SA. Ortho-substituted iodobenzenes as novel organocatalysts for bromination of alkenes. Chem Commun, 2006, 2483–2485

    Google Scholar 

  211. Liu HJ, Tan CH. Iodobenzene-catalysed iodolactonisation using sodium perborate monohydrate as oxidant. Tetrahedron Lett, 2007, 48: 8220–8222

    CAS  Google Scholar 

  212. Yan J, Wang H, Yang ZP, He Y. An efficient catalytic sulfonyloxylactonization of alkenoic acids using hypervalent iodine(III) reagent. Synlett, 2009, 16: 2669–2672

    Google Scholar 

  213. Fujita M, Yoshida, Y, Miyata K, Wakisaka A, Sugimura T. Enantiodifferentiating endo-selective oxylactonization of ortho-alk-1-enylbenzoate with a lactate-derived aryl-λ3-iodane. Angew Chem Int Ed, 2010, 49: 7068–7071

    CAS  Google Scholar 

  214. Shah M, Taschner MJ, Koser GF, Rach NL, Jenkins TE, Cyr P, Powers D. Bislactonizations of olefinic diacids with [hydroxyl( tosyloxy)iodo]benzene. Tetrahedron Lett, 1986, 27: 5437–5440

    CAS  Google Scholar 

  215. Browne DM, Niyomura O, Wirth T. Catalytic use of selenium electrophiles in cyclizations. Org Lett, 2007, 9: 3169–3171

    CAS  Google Scholar 

  216. Zhao FF, Liu X, Qi R, Zhang-Negrerie D, Huang JH, Du YF, Zhao K. Synthesis of 2-(trifluoromethyl)oxazoles from β-monosubstituted enamines via PhI(OCOCF3)2-mediated trifluoroacetoxylation and cyclization. J Org Chem, 2012, 76: 10338–10344

    Google Scholar 

  217. Liu X, Cheng R, Zhao FF, Zhang-Negrerie D, Du YF, Zhao K. Direct β-acyloxylation of enamines via PhIO-mediated intermolecular oxidative C-O bond formation and its application to the synthesis of oxazoles. Org Lett, 2012, 14: 5480–5483

    CAS  Google Scholar 

  218. Kim HJ, Schlecht MF. Substituent-directed oxidation: Regiochemistry and stereochemistry of the addition of hypervalent iodine reagents to cycloalkenols. Tetrahedron Lett, 1987, 28: 5229–5232

    CAS  Google Scholar 

  219. Huang XH, Shao N, Palani A, Aslanian R. Oxidative entry to α-oxy N-acyl aminals and hemiaminals: Efficient formation of 2-(N-acylaminal) substituted tetrahydropyrans. Tetrahedron Lett, 2007, 48: 1967–1971

    CAS  Google Scholar 

  220. Huang XH, Shao N, Palani A, Aslanian R, Buevich A, Seidel-Dugan C, Huryk R. Synthesis of seco-psymberin/irciniastatin A: The discovery of a novel PhI(OAc)2 mediated cascade cyclization reaction. Tetrahedron Lett, 2008, 49: 3592–3595

    CAS  Google Scholar 

  221. Zheng YH, Li XM, Ren CF, Zhang-Negrerie D, Du YF, Zhao K. Synthesis of oxazoles from enamides via phenyliodine diacetatemediated intramolecular oxidative cyclization. J Org Chem, 2012, 77: 10353–10361

    CAS  Google Scholar 

  222. Fujita M, Lee HJ, Sugimura T, Okuyama T. Oxygenation vs iodonio substitution during the reactions of alkenylsilanes with iodosylbenzene: Participation of the internal oxy group. Chem Commun, 2007, 1139–1141

    Google Scholar 

  223. Fujita M, Okuno S, Lee HJ, Sugimura T, Okuyama T. Enantiodifferentiating tetrahydrofuranylation of but-3-enyl carboxylates using optically active hypervalent iodine(III) reagents via a 1,3-dioxan-2-yl cation intermediate. Tetrahedron Lett, 2007, 48: 8691–8694

    CAS  Google Scholar 

  224. Yang RY, Dai LX. Hypervalent iodine oxidation of N-acylhydrazones and N-phenylsemicarbazone: an efficient method for the synthesis of derivatives of 1,3,4-oxadiazoles and Δ3-1,3,4-oxadiazolines. J Org Chem, 1993, 58: 3381–3383

    CAS  Google Scholar 

  225. Shang ZH, Reiner J, Chang JB, Zhao K. Oxidative cyclization of aldazines with bis(trifluoroacetoxy)iodobenzene. Tetrahedron Lett, 2005, 46: 2701–2704

    CAS  Google Scholar 

  226. Varma RS, Saini RK, Prakash O. Hypervalent iodine oxidation of phenolic Schiff’s bases: Synthesis of 2-arylbenzoxazoles. Tetrahedron Lett, 1997, 38: 2621–2622

    CAS  Google Scholar 

  227. Prakash O, Pannu K, Kumar A. Synthesis of some new 2-(3-aryl-1-phenyl-4-pyrazolyl)-benzoxazoles using hypervalent iodine mediated oxidative cyclization of schiff’s bases. Molecules, 2006, 11: 43–48

    CAS  Google Scholar 

  228. Joseph J, Kim JY, Chang S. A metal-free route to 2-aminooxazoles by taking advantage of the unique ring opening of benzoxazoles and oxadiazoles with secondary amines. Chem Eur J, 2011, 17: 8294–8298

    CAS  Google Scholar 

  229. Bassindale AR, Katampe I, Taylor PG. Improved simple synthesis of cyclic sulfates from trimethylsilyl chlorosulfonate. Can J Chem, 2000, 78: 1479–1483

    CAS  Google Scholar 

  230. Robinson RI, Woodward S. Direct formation of cyclic sulfates utilising hypervalent iodine species and sulfur trioxide adducts. Tetrahedron Lett, 2003, 44: 1655–1657

    CAS  Google Scholar 

  231. Ochiai M, Nakanishi A, Suefuji T. Unprecedented direct oxygen atom transfer from hypervalent oxido-λ3-iodanes to α,β-unsaturated carbonyl compounds: Synthesis of α,β-epoxy carbonyl compounds. Org Lett, 2000, 2: 2923–2926

    CAS  Google Scholar 

  232. McQuaid KM, Pettus TRR. Chemoselective epoxidation of electron deficient enones with iodosylbenzene. Synlett, 2004, 13: 2403–2405

    Google Scholar 

  233. Lee S, MacMillan DWC. Enantioselective organocatalytic epoxidation using hypervalent iodine reagents. Tetrahedron, 2006, 62: 11413–11424

    CAS  Google Scholar 

  234. Moriarty RM, Prakash O, Prakash I, Musallam HA. Intramolecular participation in hypervalent iodine oxidation. The synthesis of coumaran-3-ones, aurone, and isoaurone. J Chem Soc, Chem Commun, 1984, 1342–1343

    Google Scholar 

  235. Fan RH, Sun Y, Ye Y. Iodine(III)-mediated tandem acetoxylationcyclization of o-acyl phenols for the facile construction of α-acetoxy benzofuranones. Org Lett, 2009, 11: 5174–5177

    CAS  Google Scholar 

  236. Lu SC, Zheng PR, Liu G. Iodine(III)-mediated tandem oxidative cyclization for construction of 2-nitrobenzo[b]furans. J Org Chem, 2012, 77: 7711–7717

    CAS  Google Scholar 

  237. Tohma H, Maegawa T, Takizawa S, Kita Y. Facile and clean oxidation of alcohols in water using hypervalent iodine(III) reagents. Adv. Synth Catal, 2002, 344: 328–337

    CAS  Google Scholar 

  238. Hansen TM, Florence GJ, Lugo-Mas P, Chen JH, Abrams JN, Forsyth CJ. Highly chemoselective oxidation of 1,5-diols to δ-lactones with TEMPO/BAIB. Tetrahedron Lett, 2003, 44: 57–59

    CAS  Google Scholar 

  239. Giannis A, Heretsch P, Sarli V, Stöβel A. Synthesis of cyclopamine using a biomimetic and diastereoselective approach. Angew Chem Int Ed, 2009, 48: 7911–7914

    CAS  Google Scholar 

  240. Ye Y, Zheng C, Fan RH. Solvent-controlled oxidative cyclization for divergent synthesis of highly functionalized oxetanes and cyclopropanes. Org Lett, 2009, 11: 3156–3159

    CAS  Google Scholar 

  241. Yuan YC, Yang R, Zhang-Negrerie D, Wang JW, Du YF, Zhao K. One-pot synthesis of 3-hydroxyquinolin-2(1H)-ones from N-phenylacetoacetamide via PhI(OCOCF3)2-mediated α-hydroxylation and H2 SO4-promoted intramolecular cyclization. J Org Chem, 2013, 78: 5385–5392

    CAS  Google Scholar 

  242. Moriarty RM, Vaid RK, Hopkins TE, Vaid BK, Prakash O. Hypervalent iodine oxidation of 5-keto acids and 4,6-diketo acids with [hydroxyl(tosyloxy)iodo]benzene: Synthesis of keto-λ-lactones and diketo-δ-lactones. Tetrahedron Lett, 1990, 31: 201–204

    CAS  Google Scholar 

  243. Patra A, Batra S, Kundu B, Joshi BS, Roy R, Bhaduri AP. 5-Isoxazolecarboxaldehyde: A novel substrate for fast Baylis-Hillman reaction. Synthesis, 2001, 2: 276–280

    Google Scholar 

  244. Patra A, Batra S, Bhaduri AP, Khanna A, Chander R, Dikshit M. Isoxazole-based derivatives from Baylis-Hillman chemistry: Assessment of preliminary hypolipidemic activity. Bioorg Med Chem, 2003, 11: 2269–2276

    CAS  Google Scholar 

  245. Huang X, Zhu Q, Zhang JZ. Preparation of resin bound [hydroxy( tosyloxy)iodo]benzene and its use in 5-benzoyldihydro-2(3H)-furanone synthesis. J Chem Res (S), 2001, 11: 480–481

    Google Scholar 

  246. Hou RS, Wang HM, Lin YC, Chen LC. Hypervalent iodine(III) sulfonate mediated synthesis of 5-benzoyldihydro-2(3H)-furan-one in ionic solvent. Heterocycles, 2005, 65: 649–656

    CAS  Google Scholar 

  247. Uyanik M, Yasui T, Ishihara K. Hypervalent iodine-catalyzed oxylactonization of ketocarboxylic acids to ketolactones. Bioorg Med Chem Lett, 2009, 19: 3848–3851

    CAS  Google Scholar 

  248. Uyanik M, Suzuki D, Yasui T, Ishihara K. In situ generated (hypo) iodite catalysts for the direct α-oxyacylation of carbonyl compounds with carboxylic acids. Angew Chem Int Ed, 2011, 50: 5331–5334

    CAS  Google Scholar 

  249. Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y. Direct lactone formation by using hypervalent iodine(III) reagents with KBr via selective C-H abstraction protocol. Org Lett, 2007, 9: 3129–3132

    CAS  Google Scholar 

  250. Ye Y, Wang LF, Fan RH. Aqueous iodine(III)-mediated stereoselective oxidative cyclization for the synthesis of functionalized fused dihydrofuran derivatives. J Org Chem, 2010, 75: 1760–1763

    CAS  Google Scholar 

  251. Saito A, Matsumoto A, Hanzawa Y. PIDA-mediated synthesis of oxazoles through oxidative cycloisomerization of propargylamides. Tetrahedron Lett, 2010, 51: 2247–2250

    CAS  Google Scholar 

  252. Souto JA, Becker P, Iglesias Á, Muñiz K. Metal-free iodine( III)-promoted direct intermolecular C-H amination reactions of acetylenes. J Am Chem Soc, 2012, 134: 15505–15511

    CAS  Google Scholar 

  253. Kita Y, Egi M, Ohtsubo M, Saiki T, Takada T, Tohma H. Novel and efficient synthesis of sulfur-containing heterocycles using a hypervalent iodine(III) reagent. Chem Commun, 1996, 2225–2226

    Google Scholar 

  254. Kita Y, Egi M, Tohma H. Total synthesis of sulfur-containing pyrroloiminoquinone marine product, (+/−)-makaluvamine F using hypervalent iodine(III)-induced reactions. Chem Commun, 1999, 143–144

    Google Scholar 

  255. Downer-Riley NK, Jackson YA. Conversion of thiobenzamides to benzothiazoles via intramolecular cyclization of the aryl radical cation. Tetrahedron, 2008, 64: 7741–7744

    CAS  Google Scholar 

  256. Huang P, Fu XL, Liang YJ, Zhang R, Dong DW. Divergent synthesis of benzo[d]thiazoles by PIFA-mediated cyclization of β-oxo thioamides. Aust J Chem, 2012, 65: 121–128

    CAS  Google Scholar 

  257. Kotali A. Synthesis and electron impact mass spectra of 3-substituted 2-acylaminoindazoles. J Heterocycl Chem, 1996, 33: 605–606

    CAS  Google Scholar 

  258. Sajiki H, Hattori K, Sako M, Hirota K. A new synthesis of pyrazolo[ 3,4-d]pyrimidine-4,6(5H,7H)-diones by oxidative N-N bond formation of 6-amino-5-(N-aryliminomethyl)uracils using iodobenzene diacetate. Synlett, 1997, 1409–1410

    Google Scholar 

  259. Correa A, Tellitu I, Domínguez E, SanMartín R. Novel Alternative for the N-N bond formation through a PIFA-mediated oxidative cyclization and its application to the synthesis of indazol-3-ones. J Org Chem, 2006, 71: 3501–3505

    CAS  Google Scholar 

  260. Correa A, Tellitu I, Domínguez E, SanMartín R. An advantageous synthesis of new indazolone and pyrazolone derivatives. Tetrahedron, 2006, 62: 11100–11105

    CAS  Google Scholar 

  261. Wang KW, Fu XL, Liu JY, Liang YJ, Dong DW. PIFA-mediated oxidative cyclization of 1-carbamoyl-1-oximylcycloalkanes: Synthesis of spiro-fused pyrazolin-5-one N-oxides. Org Lett, 2009, 11: 1015–1018

    CAS  Google Scholar 

  262. Prakash O, Saini RK, Singh SP, Varma RS. Hypervalent iodine oxidation of o-aminochalcones: A novel synthesis of 3-(β-Styryl)-2,1-benzisoxazoles. Tetrahedron Lett, 1997, 38: 3147–3150

    CAS  Google Scholar 

  263. Wang HM, Huang HY, Kang IJ, Chen LC. An interrupted pummerer reaction induced by hypervalent iodine(III) reagent: Facile synthesis of 2-aryl-1,2-benzisothiazol-3(2H)-ones. Heterocycles, 2001, 55: 1231–1235

    CAS  Google Scholar 

  264. Huang J, Lu YM, Qiu BF, Liang YJ, Li N, Dong DW. One-pot synthesis of substituted isothiazol-3(2H)-ones: Intramolecular annulation of α-carbamoyl ketene-S,S-acetals via PIFA-mediated N-S bond formation. Synthesis, 2007, 18: 2791–2796

    Google Scholar 

  265. Correa A, Tellitu I, Domínguez E, SanMartín R. Novel alternative for the N-S bond formation and its application to the synthesis of benzisothiazol-3-ones. Org Lett, 2006, 8: 4811–4813

    CAS  Google Scholar 

  266. Brahemi G, Kona FR, Fiasella A, Buac D, Soukupová J, Brancale A, Burger AM, Westwell AD. Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer. J Med Chem, 2010, 53: 2757–2765

    CAS  Google Scholar 

  267. Dahl R, Bravo Y, Sharma V, Ichikawa M, Dhanya RP, Hedrick M, Brown B, Rascon J, Vicchiarelli M, Mangravita-Novo A, Yang L, Stonich D, Su Y, Smith LH, Sergienko E, Freeze HH, Cosford NDP. Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia. J Med Chem, 2011, 54: 3661–3668

    CAS  Google Scholar 

  268. Huang X, Zhu Q. The synthesis of cross-linked poly[styrene(iodoso diacetate)] and application in preparation of pyrazoline. Synth Commun, 2001, 31: 111–115

    CAS  Google Scholar 

  269. Zhang PF, Chen ZC. Hypervalent iodine in synthesis 72: A tandem dimerisation-cyclocondensation of enaminones with [bis(trifluoro-acetoxy)iodo]benzene: An effective method for the synthesis of highly substituted pyrroles. J Chem Res (S), 2001, 150–152

    Google Scholar 

  270. Wang JY, Liu SP, Yu W. Synthesis of polysubstituted pyrroles via PhI(OAc)2-mediated oxidative coupling of enamine esters and ketones. Synlett, 2009, 2529–2533

    Google Scholar 

  271. Huang J, Liang YJ, Pan W, Yang Y, Dong DW. Efficient synthesis of highly substituted pyrrolin-4-ones via PIFA-mediated cyclization reactions of enaminones. Org Lett, 2007, 9: 5345–5348

    CAS  Google Scholar 

  272. Jacquemot G, Ménard MA, L’Homme C, Canesi S. Oxidative cycloaddition and cross-coupling processes on unactivated benzene derivatives. Chem Sci, 2013, 4: 1287–1292

    CAS  Google Scholar 

  273. Wang SP, Gates BD, Swenton JS. A convergent route to dihydrobenzofuran neolignans via a formal 1,3-cycloaddition to oxidized phenols. J Org Chem, 1991, 56: 1979–1981

    CAS  Google Scholar 

  274. Gates BD, Dalidowicz P, Tebben A, Wang SP, Swenton JS. Mechanistic aspects and synthetic applications of the electrochemical and iodobenzene bis(trifluoroacetate) oxidative 1,3-cycloadditions of phenols and electron-rich styrene derivatives. J Org Chem, 1992, 57: 2135–2143

    CAS  Google Scholar 

  275. Juhász L, Kürti L, Antus S. Simple synthesis of benzofuranoid neolignans from myristica fragrans. J Nat Prod, 2000, 63: 866–870

    Google Scholar 

  276. Burgett AWG, Li QY, Wei Q, Harran PG. A concise and flexible total synthesis of (−)-diazonamide A. Angew Chem Int Ed, 2003, 42: 4961–4966

    CAS  Google Scholar 

  277. Bérard D, Racicot L, Sabot C, Canesi S. Formal [2+3] cycloaddition between substituted phenols and allylsilane. Synlett, 2008, 7: 1076–1080

    Google Scholar 

  278. Fan RH, Li WX, Ye Y, Wang LF. One-pot oxidative heteroannulations of N-sulfonylanilines with styrenes for the construction of 5-aminocoumaran derivatives. Adv Synth Catal, 2008, 350: 1531–1536

    CAS  Google Scholar 

  279. Bérard D, Jean A, Canesi S. Novel formal [2+3] cycloaddition between substituted phenols and furan. Tetrahedron Lett, 2007, 48: 8238–8241

    Google Scholar 

  280. Bérard D, Giroux MA, Racicot L, Sabot C, Canesi S. Intriguing formal [2+3] cycloaddition promoted by a hypervalent iodine reagent. Tetrahedron, 2008, 64: 7537–7544

    Google Scholar 

  281. Guérard KC, Sabot C, Beaulieu MA, Giroux MA, Canesi S. ‘Aromatic ring umpolung’, a rapid access to the main core of several natural products. Tetrahedron, 2010, 66: 5893–5901

    Google Scholar 

  282. De SK, Mallik AK. An easy construction of 8,12-dioxa-13-azatri-cyclo[8.3.1.02,7]tetradeca-2(7),3,5,13-tetraen-14-ones. Tetrahedron Lett, 1998, 39: 2389–2390

    CAS  Google Scholar 

  283. Das B, Holla H, Mahender G, Banerjee J, Reddy MR. Hypervalent iodine-mediated interaction of aldoximes with activated alkenes including Baylis-Hillman adducts: A new and efficient method for the preparation of nitrile oxides from aldoximes. Tetrahedron Lett, 2004, 45: 7347–7350

    CAS  Google Scholar 

  284. Das B, Holla H, Mahender G, Venkateswarlu K, Bandgar BP. A convenient method for the preparation of benzopyrano- and furopyrano-2-isoxazoline derivatives using hypervalent iodine reagents. Synthesis, 2005, 10: 1572–1574

    Google Scholar 

  285. Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Oxidation of oximes to nitrile oxides with hypervalent iodine reagents. Org Lett, 2009, 11: 1539–1542

    CAS  Google Scholar 

  286. Jen T, Mendelsohn BA, Ciufolini MA. Oxidation of α-oxo-oximes to nitrile oxides with hypervalent iodine reagents. J Org Chem, 2011, 76: 728–731

    CAS  Google Scholar 

  287. Frie JL, Jeffrey CS, Sorensen EJ. A hypervalent iodine-induced double annulation enables a concise synthesis of the pentacyclic core structure of the cortistatins. Org Lett, 2009, 11(23): 5394–5397

    CAS  Google Scholar 

  288. Chatterjee N, Pandit P, Halder S, Patra A, Maiti DK. Generation of nitrile oxides under nanometer micelles built in neutral aqueous media: Synthesis of novel glycal-based chiral synthons and optically pure 2,8-dioxabicyclo[4.4.0]decene core. J Org Chem, 2008, 73: 7775–7779

    CAS  Google Scholar 

  289. Raihan MJ, Kavala V, Kuo CW, Raju BR, Yao CF. ‘On-water’ synthesis of chromeno-isoxazoles mediated by [hydroxy(tosyloxy) iodo]-benzene (HTIB). Green Chem, 2010, 12: 1090–1096

    CAS  Google Scholar 

  290. Hou YW, Lu SC, Liu G. Iodine(III)-mediated [3+2] cyclization for one-pot synthesis of benzo[d]isoxazole-4,7-diols in aqueous medium. J Org Chem, 2013, 78: 8386–8395

    CAS  Google Scholar 

  291. Jawalekar AM, Reubsaet E, Rutjes FPJT, Van Delft FL. Synthesis of isoxazoles by hypervalent iodine-induced cycloadditionof nitrile oxides to alkynes. Chem Commun, 2011, 47: 3198–3200

    CAS  Google Scholar 

  292. Yoshimura A, Middleton KR, Todora AD, Kastern BJ, Koshi SR, Maskaev AV, Zhdankin VV. Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Org Lett, 2013, 15: 4010–4013

    CAS  Google Scholar 

  293. Karade NN, Shirodkar SG, Patil MN, Potrekar RA, Karade HN. Diacetoxyiodobenzenemediated oxidative addition of 1,3-dicarbonyl compounds to olefins: An efficient one-pot synthesis of 2,3-dihydrofuran derivatives. Tetrahedron Lett, 2003, 44: 6729–6731

    CAS  Google Scholar 

  294. Varma RS, Kumar D. A facile one-pot synthesis of 2,5-disubstituted oxazoles using iodobenzene diacetate. J Heterocyclic Chem, 1998, 35: 1533–1534

    CAS  Google Scholar 

  295. Lee JC, Choi HJ, Lee YC. Efficient synthesis of multi-substituted oxazoles under solvent-free microwave irradiation. Tetrahedron Lett, 2003, 44: 123–125

    CAS  Google Scholar 

  296. Chen JM, Wu LL, Huang X. One-pot synthesis of 2,5-disubstituted oxazoles using poly[styrene(iodosodiacetate)]. Chin Chem Lett, 2004, 15: 143–144

    CAS  Google Scholar 

  297. Huang X, Chen JM. A facile one-pot synthesis of 2,5-disubstituted oxazoles using poly[styrene(iodosodiacetate)]. Chin J Chem, 2004, 22: 222–224

    CAS  Google Scholar 

  298. Kawano Y, Togo H. Iodoarene-catalyzed one-pot preparation of 2,4,5-trisubstituted oxazoles from alkyl aryl ketones with mCPBA in nitriles. Tetrahedron, 2009, 65: 6251–6256

    CAS  Google Scholar 

  299. Liu LP, Lu JM, Shi M. PhI(OAc)2-mediated novel 1,3-dipolar cycloaddition of methylenecyclopropanes (MCPs), vinylidenecyclopropanes (VCPs), and methylenecyclobutane (MCB) with phthalhydrazide. Org Lett, 2007, 9: 1303–1306

    CAS  Google Scholar 

  300. Cochran BM, Michael FE. Metal-free oxidative cyclization of urea-tethered alkenes with hypervalent iodine. Org Lett, 2008, 10: 5039–5042

    CAS  Google Scholar 

  301. Farid U, Wirth T. Highly stereoselective metal-free oxyaminations using chiral hypervalent iodine reagents. Angew Chem Int Ed, 2012, 51: 3462–3465

    CAS  Google Scholar 

  302. Sun Y, Gan J, Fan R. Facile construction of oxa-aza spirobicycles via a tandem carbon-hydrogen bond oxidation. Adv Synth Catal, 2011, 353: 1735–1740

    CAS  Google Scholar 

  303. Mico AD, Margarita R, Piancateili G. The binary reagent PhI(OAc)2-Mg(ClO4)2: A SET induced ring enlargement of furan derivatives into pyranones. Tetrahedron Lett, 1995, 36: 3553–3556

    Google Scholar 

  304. Ohno M. PhI(OAc)2-promoted rearrangement of the hydroxyl group: Ring expansion of 4-hydroxy-2-cyclobutenone to 2(5H)-furanone in comparison with ring cleavage of the α-hydroxycycloalkanone to the ω-formyl ester. J Org Chem, 1999, 64: 8995–9000

    CAS  Google Scholar 

  305. Prakash O, Batra H, Kaur H, Sharma PK, Sharma V, Singh SP, Moriarty RM. Hypervalent iodine oxidative rearrangement of anthranilamides, salicylamides and some β-substituted amides: A new and convenient synthesis of 2-benzimidazolones, 2-benzoxazolones and related compounds. Synthesis, 2001, 4: 541–543

    Google Scholar 

  306. Juhász L, Szilágyi L, Antus S, Visy J, Zsila F, Simonyi M. New insight into the mechanism of hypervalent iodine oxidation of flavanones. Tetrahedron, 2002, 58: 4261–4265

    Google Scholar 

  307. Ghosh AK, Cheng X, Zhou B. Enantioselective total synthesis of (+)-lithospermic acid. Org Lett, 2012, 14: 5046–5049

    CAS  Google Scholar 

  308. Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Novel lactonization with phenonium ion participation induced by hypervalent iodine reagents. Org Lett, 2003, 5: 2157–2159

    CAS  Google Scholar 

  309. Singh FV, Rehbein J, Wirth T. Facile oxidative rearrangements using hypervalent iodine reagents. ChemistryOpen, 2012, 1: 245–250

    CAS  Google Scholar 

  310. Inagaki T, Nakamura Y, Sawaguchi M, Yoneda N, Ayuba S, Hara S. Fluorinative ring-expansion of cyclic ethers using p-iodotoluene difluoride. Stereoselective synthesis of fluoro cyclic ethers. Tetrahedron Lett, 2003, 44: 4117–4119

    CAS  Google Scholar 

  311. Abo T, Sawaguchi M, Senboku H, Hara S. Stereoselective synthesis of 5–7 membered cyclic ethers by deiodonative ring-enlargement using hypervalent iodine reagents. Molecules, 2005, 10: 183–189

    CAS  Google Scholar 

  312. Kita Y, Matsuda S, Fujii E, Horai M, Hata K, Fujioka H. Domino reaction of 2,3-epoxy-1-alcohols and PIFA in the presence of H2O and the concise synthesis of (+)-tanikolide. Angew Chem Int Ed, 2005, 44: 5857–5860

    CAS  Google Scholar 

  313. Fujioka H, Matsuda S, Horai M, Fujii E, Morishita M, Nishiguchi N, Hata K, Kita Y. Facile and efficient synthesis of lactols by a domino reaction of 2,3-epoxy alcohols with a hypervalent iodine(III) reagent and its application to the synthesis of lactones and the asymmetric synthesis of (+)-tanikolide. Chem Eur J, 2007, 13: 5238–5248

    CAS  Google Scholar 

  314. Iglesias-Arteaga MA, Velázquez-Huerta GA. Favorskii rearrangement of 23-oxo-3-epi-smilagenin acetate induced by iodosobenzene. Tetrahedron Lett, 2005, 46: 6897–6899

    CAS  Google Scholar 

  315. Chanu A, Castellote I, Commeureuc A, Safir I, Arseniyadis S. The domino chemistry approach to molecular complexity: High-yielding bis-hetero intramolecular Diels-Alder reactions with ketone components. Tetrahedron: Asymmetry, 2006, 17: 2565–2591

    CAS  Google Scholar 

  316. Chanu A, Safir I, Basak R, Chiaroni A, Arseniyadis S. Synthesis of a norsesquiterpene spirolactone/steroidal hybrid by using an environmentally friendly domino reaction as a key step. Eur J Org Chem, 2007, 4305–4312

    Google Scholar 

  317. Fujioka H, Komatsu H, Nakamura T, Miyoshi A, Hata K, Ganesh J, Murai K, Kita Y. Organic synthesis using a hypervalent iodine reagent: Unexpected and novel domino reaction leading to spiro cyclohexadienone lactones. Chem Commun, 2010, 46: 4133–4135

    CAS  Google Scholar 

  318. Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. PhI(OCOCF3)2-mediated C-C bond formation concomitant with a 1,2-aryl shift in a metal-free synthesis of 3-arylquinolin-2-ones. Org Lett, 2013, 15: 2906–2909

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YunFei Du or Kang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z., Zhang-Negrerie, D., Du, Y. et al. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem. 57, 189–214 (2014). https://doi.org/10.1007/s11426-013-5043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5043-1

Keywords

Navigation