Skip to main content
Log in

Resourceability on nuclear fuel cycle by transmutation approach

  • Articles
  • Special Topic Nuclear Fuel Cycle Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A resourceability on nuclear fuel cycle by transmutation of fission products in the spent fuel of nuclear reactors is discussed in this paper to investigate the feasibility of “creation and utilization” of Après ORIENT from Adv.-ORIENT cycle, in which chemical “separation and utilization” of nuclear rare metals (platinum group metals, Mo, Tc, rare earth, etc.) has been proposed since FY2006. Après ORIENT research program was newly initiated in FY2011 for nuclear transmutation of fission products into stable or short-lived highly-valuable elements. In the resourceability of rare earth metals from fission products, non-radioactive Nd and Dy can be created from Pr and Tb, respectively, by transmutation. Especially, the Dy creation has a relatively high feasibility of about 10–20 %/y in creation rate. A proper moderation of neutrons in blanket of fast reactors may be required to provide a high creation rate of La from Ba. In light platinum group metals, non-radioactive Ru can be created from Tc by transmutation, of which creation rate is about 4–5 %/y in blanket of fast reactors. Pd created from Rh is almost non-radioactively depending on the isotope fraction of 107Pd. Rh creation from Ru is not feasible under the neutron irradiation of typical nuclear reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ozawa M, Suzuki T, Koyama S, Akatsuka H, Mimura H, Fujii Y. A new back-end cycle strategy for enhancing separation, transmutation and utilization of materials (Adv.-ORIENT Cycle). Prog Nucl Energy, 2008, 50: 476–482

    Article  CAS  Google Scholar 

  2. Ozawa M. Secondary rare metals by separation and transmutation of fission products-From Adv.-ORIENT Cycle to Après ORIENT. Proceedings of the 17th Symposium on Separation Science and Technology for Energy Applications. Gatlinburg, USA, 2011, 38–39

  3. Ozawa M, Koyama S, Suzuki T, Fuji Y. Innovative separation method for advanced spent fuel reprocessing based on tertiary pyridine resin. CzJPH, Part II, 2006, 56: D579–587

    CAS  Google Scholar 

  4. Han CY, Sakata Y, Ozawa M, Saito M. Neutronic feasibility of La production from Ba in nuclear reactors. The 29th Symposium of the Rare Earth Society of Japan. Hokkaido, Japan, 2012

  5. Katakura J, Kataoka M, Suyama K, Jin T, Ohki S. A set of ORIGEN2 cross section libraries based on JENDL-3.3 library: ORLIBJ33. JAERI-Data/Code 2004-015. 2004

  6. Sakata Y, Han CY, Ozawa M, Saito M. Nd and Dy creation by transmutation in nuclear reactors. The 29th Symposium of the Rare Earth Society of Japan. Hokkaido, Japan, 2012 (in Japanese)

  7. Sakata Y. A study on transmutation of radioactive rare earth metals in nuclear reactor. Dissertation for the Undergraduate Degree. Tokyo Institute of Technology, 2012 (in Japanese)

  8. PWR47J40. LIB, MONJMXICJ40, and MONJMXRDJ40 in ORLIBJ40 Library. JAEA. 2011

  9. Yoshioka T. A study on creation of platinum group metals in nuclear reactor. Dissertation for the Master Degree. Tokyo Institute of Technology, 2012 (in Japanese)

  10. Kloosterman JL, Li JM. Transmutation of Tc-99 and I-129 in fission reactors — A calculation study. ECN-R-95-002. 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ozawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Ozawa, M. & Saito, M. Resourceability on nuclear fuel cycle by transmutation approach. Sci. China Chem. 55, 1746–1751 (2012). https://doi.org/10.1007/s11426-012-4690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4690-y

Keywords

Navigation