Skip to main content
Log in

On the Hermite interpolation

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Explicit representations for the Hermite interpolation and their derivatives of any order are provided. Furthermore, suppose that the interpolated function f has continuous derivatives of sufficiently high order on some sufficiently small neighborhood of a given point x and any group of nodes are also given on the neighborhood. If the derivatives of any order of the Hermite interpolation polynomial of f at the point x are applied to approximating the corresponding derivatives of the function f(x), the asymptotic representations for the remainder are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quarteroni A, Sacco R, Saleri F. Numerical Mathematics. New York: Springer-Verlag, 2000

    Google Scholar 

  2. Berezin I S, Zhidkov N P. Computing Methods. London: Pergamon Press, 1973

    Google Scholar 

  3. Traub J F. On Lagrange-Hermite interpolation. J Soc Indust Appl Math, 12: 886–891 (1964)

    Article  MathSciNet  Google Scholar 

  4. Huang W, Sloan D M. The pseudospectral method for solving differential eigenvalue problems. J Comput Phys, 111: 399–409 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Khan I R, Ohba R. Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series. J Comput Appl Math, 107: 179–193 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Khan I R, Ohba R. New finite difference formulas for numerical differentiation. J Comput Appl Math, 126: 269–276 (2001)

    Article  MathSciNet  Google Scholar 

  7. Li J P. General explicit difference formulas for numerical differentiation. J Comput Appl Math, 183: 29–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pólya G. Kombinatourische Anzahlbestmmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math, 68: 145–254 (1937)

    Article  MATH  Google Scholar 

  9. Bell E T. Exponential polynomials. Ann of Math, 35: 258–277 (1934)

    Article  MathSciNet  Google Scholar 

  10. Comtet L. Analyse Combinatoire, Tomes I et II(French). Paris: Presses Universitaires de France, 1970

    Google Scholar 

  11. Wang H Y, Cui F, Wang X H. Explicit representations for local Lagrangian numerical differentiation. Acta Math Sin (Engl Ser), 23(2): 365–372 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1972

    MATH  Google Scholar 

  13. Craik A D D. Prehistory of Faà di Bruno’s formula. Amer Math Monthly, 112: 119–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Floater M S, Lyche T. Two chain rules for divided differeces and Faà di Bruno’s formula. Math Comp, 76: 867–577

  15. Wang X H, Wang H Y. On the divided difference form of Faà di Bruno’s formula. J Comput Math, 24: 553–560 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Wang X H, Xu A M. On the divided difference form of Faà di Bruno’s formula II. J Comput Math, 25(5): (2007)

  17. Wang X. The remainder of numerical differentiation formula (in Chinese), Hangzhou Daxue Xuebao, 5(1): 1–10 (1978). An announcement of the results appeared in Kexue Tongbao, 24(19): 859-872 (1979)

    Google Scholar 

  18. Wang X H, Lai M J, Yang S J. On the divided difference of the remainder in polynomial interpolation. J Approx Theory, 127: 193–197 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pólya G, Szegö G. Problems and Theorems in Analysis (Vol. II). New York: Springer-Verlag, 1976

    Google Scholar 

  20. Kallioniemi H. The Landau problem on compact intervals and optimal numerical differentiation. J Approx Theory, 63: 72–91 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shadrin A. Error bounds for Lagrange interpolation. J Approx Theory, 80: 25–49 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Quarteroni A, Valli A. Numerical Approximation of Partial Differential Equations. Berlin and Heidelberg: Springer-Verlag, 1994

    MATH  Google Scholar 

  23. Wang X, Cui F. Stable Lagrangian numerical differentiation with the highest order of approximation. Sci China Ser A-Math, 49: 225–232 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-hua Wang.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant No. 10471128)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xh. On the Hermite interpolation. SCI CHINA SER A 50, 1651–1660 (2007). https://doi.org/10.1007/s11425-007-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-007-0116-2

Keywords

MSC(2000)

Navigation