Skip to main content

Advertisement

Log in

Relational, structural, and semantic analysis of graphical representations and concept maps

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the SMD Technology (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the computer-based and automated SMD Technology was tested in three experimental studies with 106 participants. The findings indicate a high reliability and validity. The discussion focuses on the development and realization of the three levels of the SMD Technology and applications for research, learning and instruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Correlation of a test with several outside criteria; Correlation with tests with similar validation requirements; correlation with tests that assess other criteria; analysis of inter- and intraindividual differences in test results; factorial analysis (see Lienert and Raatz 1994).

  2. The Deep Structure index δ of the SMD Technology compares the semantic similarity between a model and a reference model. This feature is not available with MITOCAR. Accordingly, the calculation of correlations between the Deep Structure and the MITOCAR indices is not necessary.

References

  • Al-Diban, S. (2002). Diagnose mentaler Modelle. Hamburg: Kovac.

    Google Scholar 

  • Bonato, M. (1990). Wissenstrukturierung mittels Struktur-Lege-Techniken. Eine grapentheoretische Analyse von Wissensnetzen. Frankfurt: Lang.

    Google Scholar 

  • Chartrand, G. (1977). Introductory graph theory. New York, NY: Dover.

    Google Scholar 

  • Couné, B., Hanke, U., Ifenthaler, D., & Seel, N. M. (2004). Modellkonstruktionen beim Problemlösen im Kontext entdeckenden Lernens: Eine Studie zur Implementierung theoretisch-begründeter Instruktionsprinzipien. Zweiter Bericht aus dem Forschungsprojekt „Modell-begründetes Lernen und Lehren. Multimediale Lernumgebungen als Gelegenheiten zum Nachdenken. Freiburg: Institut für Erziehungswissenschaft.

    Google Scholar 

  • Dummer, P., & Ifenthaler, D. (2005). Planning and assessing navigation in model-centered learning environments. Why learners often do not follow the path laid out for them. In G. Chiazzese, M. Allegra, A. Chifari, & S. Ottaviano (Eds.), Methods and technologies for learning (pp. 327–334). Southampton: WIT Press.

    Google Scholar 

  • Eckert, A. (2000). Die Netzwerk-Elaborierungs-Technik (NET)—Ein computerunterstütztes Verfahren zur Diagnose komplexer Wissensstrukturen. In H. Mandl & F. Fischer (Eds.), Wissen sichtbar machen—Wissensmanagement mit Mapping-Techniken (pp. 138–157). Göttingen: Hogrefe.

    Google Scholar 

  • Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2003). GraphViz and dynagraph. Static and dynamic graph drawing tools. Florham Park, NJ: AT&T Labs.

    Google Scholar 

  • Hanke, U. (2006). Externale Modellbildung als Hilfe bei der Informationsverarbeitung und beim Lernen. Freiburg: FreiDok.

    Google Scholar 

  • Harary, F. (1974). Graphentheorie. München: Oldenbourg.

    Google Scholar 

  • Ifenthaler, D. (2006). Diagnose lernabhängiger Veränderung mentaler Modelle. Entwicklung der SMD-Technologie als methodologisches Verfahren zur relationalen, strukturellen und semantischen Analyse individueller Modellkonstruktionen. Freiburg: FreiDok.

    Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2005). The measurement of change: Learning-dependent progression of mental models. Technology, Instruction, Cognition and Learning, 2(4), 317–336.

    Google Scholar 

  • Ifenthaler, D., Pirnay-Dummer, P., & Seel, N. M. (2007). The role of cognitive learning strategies and intellectual abilities in mental model building processes. Technology, Instruction, Cognition and Learning, 5(4), 353–366.

    Google Scholar 

  • Johnson, T. E., O’Connor, D. L., Spector, J. M., Ifenthaler, D., & Pirnay-Dummer, P. (2006). Comparative study of mental model research methods: Relationships among ACSMM, SMD, MITOCAR & DEEP methodologies. In A. J. Canas & J. D. Novak (Eds.), Proceedings of the second international conference on concept mapping (pp. 87–94). San Jose, Costa Rica: Universidad de Costa Rica.

    Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jonassen, D. H., Reeves, T. C., Hong, N., Harvey, D., & Peters, K. (1997). Concept mapping as cognitive learning and assessment tools. Journal of Interactive Learning Research, 8(3/4), 289–308.

    Google Scholar 

  • Le Ny, J.-F. (1993). Wie kann man mentale Repräsentationen repräsentieren? In J. Engelkamp & T. Pechmann (Eds.), Mentale repräsentation (pp. 31–39). Bern: Huber.

    Google Scholar 

  • Lienert, G. A., & Raatz, U. (1994). Testaufbau und testanalyse. Weinheim: Beltz.

    Google Scholar 

  • Lin, D. (1998). An information-theoretic definition of similarity. International Conference on Machine Learning, Madison, WI.

  • Mansfield, H., & Happs, J. (1991). Concept maps. Australian Mathematics Teacher, 47(3), 30–33.

    Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Novak, J. D. (1998). Learning, creating, and using knowledge: concept maps as facilitative tools in schools and corporations. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Piaget J. (1950). La construction du réel chez l’enfant. Neuchatel: Delachaux et Niestlé S.A.

    Google Scholar 

  • Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.

    Google Scholar 

  • Pirnay-Dummer, P. (2006). Expertise und Modellbildung: MITOCAR. Freiburg: FreiDok.

    Google Scholar 

  • Rost, J. (2005). Interpretation und Bewertung pädagogisch-psychologischer Studien. Weinheim: Beltz.

    Google Scholar 

  • Scandura, J. M. (1988). Role of relativistic knowledge in intelligent tutoring. Computers in Human Behavior, 5, 53–64.

    Article  Google Scholar 

  • Scandura, J. M. (2007). Introduction to knowledge representation, construction methods, associated theories and implications for advanced tutoring/learning systems. Technology, Instruction, Cognition and Learning, 5, 91–99.

    Google Scholar 

  • Seel, N. M. (1991). Weltwissen und mentale Modelle. Göttingen: Hogrefe.

    Google Scholar 

  • Seel, N. M. (1999). Educational diagnosis of mental models: Assessment problems and technology-based solutions. Journal of Structural Learning and Intelligent Systems, 14(2), 153–185.

    Google Scholar 

  • Seel, N. M. (2008). Empirical perspectives on memory and motivation. In J. Michael Spector (Ed.), Handbook of research on educational communications and technology (AECT). New York, NY: Routledge (in press).

  • Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in der Chemie. Empirische Untersuchungen am Beispiel des Chemischen Gleichgewichts. Münster: Waxmann.

    Google Scholar 

  • Stoyanova, N., & Kommers, P. (2002). Concept mapping as a medium of shared cognition in computer-supported collaborative problem solving. Journal of Interactive Learning Research, 13(1/2), 111–133.

    Google Scholar 

  • Taricani, E. M., & Clariana, R. B. (2006). A technique for automatically scoring open-ended concept maps. Educational Technology, Research, and Development, 54(1), 65–82.

    Article  Google Scholar 

  • Tergan, S.-O. (2003). Managing knowledge with computer-based mapping tools. In D. Lassner & C. Mc Naught (Eds.), Proceedings of the ED-media 2003 world conference on educational multimedia, hypermedia & telecommunication (pp. 2514–2517). Honolulu, HI: University of Honolulu.

    Google Scholar 

  • Tittman, P. (2003). Graphentheorie. Eine anwendungsorientierte Einführung. München: Carl Hanser Verlag.

    Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Ifenthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ifenthaler, D. Relational, structural, and semantic analysis of graphical representations and concept maps. Education Tech Research Dev 58, 81–97 (2010). https://doi.org/10.1007/s11423-008-9087-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-008-9087-4

Keywords

Navigation