Skip to main content
Log in

Physiological functions of solanaceous and tomato steroidal glycosides

  • Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Solanaceous plants are widely distributed. They are used as food and in folk medicine. Our studies focused on these plants, starting with Solanum lyratum and S. nigrum, which are used as anti-cancer and anti-herpes agents. Extensive investigations in 45 Solanum plant species revealed that a considerable amount of glycosides such as spirosolane, solanidane, spirostane and furostane is in these plants, and some of the isolated glycosides showed strong anti-proliferative activity against various cancer cell lines and anti-herpes activity. Furthermore, we have discovered a few new hypothetical biosynthetic routes in which the pathways for the biosynthesis of 16-acyl-pregnane and pregnane glycosides were the most interesting. The occurrence of these pregnane compounds indicates that they might be internally biosynthesized in the plant from furostanol glycosides by a reaction that is similar to Marker degradation. Furthermore, this may imply that the administration of steroidal glycosides may result in their metabolization into pregnane derivatives possessing various activities. In order to perform metabolic experiments using the steroidal glycosides, we recently isolated tomato glycosides from ripe tomato fruits for the first time. For this experiment, we examined the metabolites in urine obtained from persons that consumed tomatoes. We obtained androstane derivatives that were probably metabolized via pregnane derivatives from tomato glycoside. Hence, when a steroidal glycoside is administered, it may be metabolized into a type of steroidal hormone with various physiological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Marker RE, Tsukamoto T, Turner DL (1940) Sterols. C. Diosgenin. J Am Chem Sci 62:2525–2532

    Article  CAS  Google Scholar 

  2. Kupchan SM, Barboutis SJ, Knox JR, Cam CAL (1965) Beta-solamarine: tumor inhibitor isolated from Solanum dulcamara. Science 150:1827–1831

    Article  PubMed  CAS  Google Scholar 

  3. Saijo R, Murakami K, Nohara T, Tomimatsu T, Sato A, Matsuoka K (1982) Studies on the constituents of Solanum plants. II. On the constituents of the immature berries of Solanum nigrum L. Yakugaku Zasshi 102:300–305

    PubMed  CAS  Google Scholar 

  4. Murakami K, Ejima H, Takaishi Y, Takeda Y, Fujita T, Sato A, Nagayama Y, Nohara T (1985) Studies on the constituents of Solanum plants. V. The constituents of S. lyratum Thunb. II. Chem Pharm Bull 33:67–73

    CAS  Google Scholar 

  5. Nohara T (2004) Search for functions of natural oligoglycosides—Solanaceae and Leguminosae origin glycosides. Yakugaku Zasshi 124:183–205

    Article  PubMed  CAS  Google Scholar 

  6. Zhu X, Tsumagari H, Honbu T, Ikeda T, Ono H, Nohara T (2001) Peculiar steroidal saponins with opened E-ring from Solanum genera plants. Tetrahedron Lett 42:8043–8046

    Article  CAS  Google Scholar 

  7. Tagawa C, Okawa M, Ikeda M, Yoshida T, Nohara T (2003) Homo-cholestane glycosides from Solanum aethiopicum. Tetrahedron Lett 44:4839–4841

    Article  CAS  Google Scholar 

  8. Ikeda T, Tsumagari H, Okawa M, Nohara T (2004) Pregnane- and furostane-type oligoglycosides from the seeds of Allium tuberosum. Chem Pharm Bull 52:142–145

    Article  PubMed  CAS  Google Scholar 

  9. Nohara T, Yabuta H, Suenobu M, Hida R, Miyahara K, Kawasaki T (1973) Steroid glycosides in Paris polyphlla Sm. Chem Pharm Bull 21:1240–1247

    CAS  Google Scholar 

  10. Nakamura T, Komori C, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima A (1996) Cytotoxic activities of Solanum steroidal glycosides. Chem Pharm Bull 19:564–566

    CAS  Google Scholar 

  11. Ikeda T, Tsumagari H, Honbu T, Nohara T (2003) Cytotoxic activity of steroidal glycosides from Solanum plants. Biol Pharm Bull 26:1198–1201

    Article  PubMed  CAS  Google Scholar 

  12. Ikeda T, Ando J, Miyazono A, Zhu X, Tsumagari H, Nohara T, Yokomizo K, Uyeda M (2000) Anti-herpes virus activiity of Solanum steroidal glycosides. Biol Pharm Bull 23:363–364

    PubMed  CAS  Google Scholar 

  13. Dong M, Feng X, Wang B, Wu L, Ikejima T (2001) Two novel furostanol saponins from the rhizomes of Dioscorea panthaica Rain et Burkill and their cytotoxic activity. Tetrahedron Lett 57:501–506

    CAS  Google Scholar 

  14. Tran Q, Tezuka Y, Banskota AH, Tran QK, Saiki I, Kadota S (2001) New spirostanol steroids and steroidal saponins from roots and rhizomes of Dracaera angustifolia and their antiproliferactive activity. J Nat Prod 64:1127–1132

    Article  PubMed  CAS  Google Scholar 

  15. Yin J, Kouda K, Tezuka Y, Tran QL, Miyahara T, Chen Y, Kadota S (2003) Steroidal glycosides from the rhizomes of Dioscorea spongiosa. J Nat Prod 66:646–650

    Article  PubMed  CAS  Google Scholar 

  16. Liu H, Xiong Z, Li F, Qu G, Kobayashi H, Yao X (2003) Two new pregnane glycosides from Dioscorea futschauensis R. Kunth. Chem Pharm Bull 51:1089–1091

    Article  PubMed  CAS  Google Scholar 

  17. Yokosuka A, Mimaki Y, Sashida Y (2002) Steroidal and pregnane glycosides from the rhizomes of Tacca chantrieri. J Nat Prod 65:1293–1298

    Article  PubMed  CAS  Google Scholar 

  18. Mimaki Y, Watanabe K, Sakagami H, Sashida Y (2002) Steroidal glycosides from the leaves of Cestrum nocturnum. J Nat Prod 65:1863–1868

    Article  PubMed  CAS  Google Scholar 

  19. Cham BE, Daunter B (1990) Topical treatment of pre-malignant and malignant skin cancers with curaderm. Drugs Today 26:55–58

    Google Scholar 

  20. Sato H, Sakamura S (1973) A bitter principle of tomato seeds. Agr Biol Chem 37:225–231

    CAS  Google Scholar 

  21. Yahara S, Uda N, Nohara T (1996) Lycoperosides AC, three stereo isomeric 23-acetoxyspirosolan-3β-ol β-lycotetraosides from Lycopersicon esculentum. Phytochemistry 42:169–172

    Article  CAS  Google Scholar 

  22. Nagaoka T, Yoshihara T, Sakamura S (1987) Lycopersiconolide, a steroidal lactone from tomato roots. Phytochemistry 26:2113–2114

    Article  CAS  Google Scholar 

  23. Yoshihara T, Nagaoka T, Sakamura S (1988) Lycopersiconol, a pregnane derivative from tomato stock roots. Phytochemistry 27:3982–3984

    Article  CAS  Google Scholar 

  24. Nagaoka T, Yosihihara T, Ohra J, Sakamura S (1993) Steroidal alkaloids from roots of tomato stook. Phytochemistry 34:1153–1157

    Article  CAS  Google Scholar 

  25. Fujiwara Y, Yahara S, Ikeda T, Ono M, Nohara T (2003) Cytotoxic major saponin from tomato fruits. Chem Pharm Bull 51:234–235

    Article  PubMed  CAS  Google Scholar 

  26. Fujiwara Y, Takaki A, Uehara Y, Ikeda T, Okawa M, Yamauchi K, Ono M, Yoshimitsu H, Nohara T (2004) Tomato steroidal alkaloid glycosides, esculeosides A and B, from ripe fruits. Tetrahedron 60:4915–1820

    Article  CAS  Google Scholar 

  27. Hara S, Okabe H, Mihashi K (1987) Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl) thiazolidine-4(R)-carboxylates. Chem Pharm Bull 35:501–507

    CAS  Google Scholar 

  28. Hirai Y, Konishi T, Sanada S, Ida Y, Shoji Y (1982) Studies on the constituents of Aspidistra elatior Blume I. On the steroids of underground part. Chem Phharm Bull 30:3176–3184

    Google Scholar 

  29. Schreiber K, Ripperger H (1962) Constitution and stereo-chemistry of solanocapsine. Liebig’s Ann 655:114–135

    Article  CAS  Google Scholar 

  30. Ito S, Takahama H, Kawaguchi T, Tanaka S, Iwaki M (2002) Post-transcriptional silencing of the tomatinase gene in Fusarium oxysporum f. sp lycopersici. J Phytopathol 150:474–480

    Article  CAS  Google Scholar 

  31. Yoshizaki M, Matsushita S, Fujiwara H, Ono M, Nohara T (2005) Tomato new sapogenols, isoesculeogenin A and esculeogenin B. Chem Pharm Bull 53:839–840

    Article  PubMed  CAS  Google Scholar 

  32. Fujiwara Y, Yoshizaki M, Matsushita M, Yahara S, Yae E, Ikeda T, Ono M, Nohara T (2005) A new tomato pregnane glycoside from overripe fruits. Chem Pharm Bull 53:580–585

    Article  Google Scholar 

  33. Matsushita S, Yoshizaki M, Fujiwara Y, Ikeda T, Ono M, Okawara T, Nohara T (2005) Facile conversion of 23-hydroxyspirosolane into pregnane. Tetraheron Lett 46:3549–3551

    Article  CAS  Google Scholar 

  34. Blunt JW, Stothers JB (1977) 13C NMR spectra of steroids—a survey and commentary. Org Mag Res 9:439–464

    Article  CAS  Google Scholar 

  35. Eggert H, Djerassi C (1981) Carbon-13 nuclear magnetic resonance spectra of monounsaturated steroids evaluation of rules for predicting their chemical shifts. J Org Chem 46:5399–5401

    Article  CAS  Google Scholar 

  36. Yoshikawa M (2002) Constituent for preventing diabetes. Kagaku Seibutsu 40:172–178

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Nohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nohara, T., Ikeda, T., Fujiwara, Y. et al. Physiological functions of solanaceous and tomato steroidal glycosides. J Nat Med 61, 1–13 (2007). https://doi.org/10.1007/s11418-006-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-006-0021-y

Keywords

Navigation