Skip to main content
Log in

Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground

  • Published:
Journal of Biomedical Science

Abstract

Since 1944, we have come a long way using aminoglycosides as antibiotics. Bacteria also have got them selected with hardier resistance mechanisms. Aminoglycosides are aminocyclitols that kill bacteria by inhibiting protein synthesis as they bind to the 16S rRNA and by disrupting the integrity of bacterial cell membrane. Aminoglycoside resistance mechanisms include: (a) the deactivation of aminoglycosides by N-acetylation, adenylylation or O-phosphorylation, (b) the reduction of the intracellular concentration of aminoglycosides by changes in outer membrane permeability, decreased inner membrane transport, active efflux, and drug trapping, (c) the alteration of the 30S ribosomal subunit target by mutation, and (d) methylation of the aminoglycoside binding site. There is an alarming increase in resistance outbreaks in hospital setting. Our review explores the molecular understanding of aminoglycoside action and resistance with an aim to minimize the spread of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akram M., Shahid M. and Khan A.U., Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann. Clin. Microbiol. Antimicrob. 6: 4, 2007

    Google Scholar 

  2. Khan A.U., Musharraf A. (2004) Plasmid-mediated multiple antibiotic resistance in Proteus mirabilis isolated from patients with urinary tract infection. Med. Sci. Monit. 10:CR598–602

    PubMed  CAS  Google Scholar 

  3. Marra A.R., Wey S.B., Castelo A. et al., Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum β-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence.␣BMC Infect. Dis. 6: 24 doi:10.1186/1471-2334-6-24, 2006

  4. Liou G.F., Yoshizawa S., Courvalin P., Galimand M. (2006) Aminoglycosides resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens. J. Mol. Biol. 359:358–364

    Article  PubMed  CAS  Google Scholar 

  5. Kotra L.P., Haddad J., Mobashery S. (2000) Aminoglycoside: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 44:3249–3256

    Article  PubMed  CAS  Google Scholar 

  6. Magnet S., Blanchard J.S. (2005) Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105:477–497

    Article  PubMed  CAS  Google Scholar 

  7. Nikaido H. (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593–656

    Article  PubMed  CAS  Google Scholar 

  8. Taber H.W., Mueller J.P., Miller P.F., Arrow A.S. (1987) Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 51:439–457

    PubMed  CAS  Google Scholar 

  9. Magnet S., Courvalin P., Lambert T. (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45:3375–3380

    Article  PubMed  CAS  Google Scholar 

  10. Moore R.A., DeShazer D., Reckseidler S., Weissman A., Woods D.E. (1999) Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 43:465–470

    PubMed  CAS  Google Scholar 

  11. Magnet S., Smith T.A., Zheng R., Nordmann P., Blanchard J.S. (2003) Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob. Agents Chemother. 47:1577–1583

    Article  PubMed  CAS  Google Scholar 

  12. Menard R., Molinas C., Arthur M., Duval J., Courvalin P., Leclercq R. (1993) Overproduction of 3′-aminoglycoside phosphotransferase type I confers resistance to tobramycin in Escherichia coli. Antimicrob. Agents. Chemother. 37:78–83

    PubMed  CAS  Google Scholar 

  13. Musser J.M. (1995) Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8:496–514

    PubMed  CAS  Google Scholar 

  14. Skeggs P.A., Thompson J., Cundliffe E. (1985) Methylation of 16 S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol. Gen. Genet. 200:415–421

    Article  PubMed  CAS  Google Scholar 

  15. Cundliffe E. (1989) How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43:207–233

    Article  PubMed  CAS  Google Scholar 

  16. Thompson J., Skeggs P.A., Cundliffe E. (1985) Methylation of 16 S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin producer, Micromonospora purpurea. Mol. Gen. Genet. 201:168–173

    Article  PubMed  CAS  Google Scholar 

  17. Gilbert D.N. (1985) Aminoglycosides. In: Mandell GL, Bennett JE, Dolin R, (eds). Principles and Practice of Infectious Diseases. 4th ed. Churchill Livingstone, New York, NY, pp. 279–306

    Google Scholar 

  18. Mingeot-Leclercq M.P., Glupczynski Y., Tulkens P.M. (1999) Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43:727–737

    PubMed  CAS  Google Scholar 

  19. Sakon J., Liao H.H., Kanikula A.M., Benning M.M., Rayment I., Holden H.M. (1993) Molecular structure of kanamycin nucleotidyl transferase determined to 3 Å resolution. Biochemistry 32:11977–11984

    Article  PubMed  CAS  Google Scholar 

  20. Wybenga-Groot L.E., Draker K., Wright G.D., Berghuis A.M. (1999) Crystal structure of an aminoglycoside 6’-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Struct. Fold. Des. 7:497–507

    Article  CAS  Google Scholar 

  21. Burk D.L., Hon W.C., Leung A.K., Berghuis A.M. (2001) Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 40:8756–8764

    Article  PubMed  CAS  Google Scholar 

  22. Spelman D.W., McDonald M., Spice W.J. (1989) Aminoglycoside antibiotic agents: a review. Therapeutics 151:346–349

    CAS  Google Scholar 

  23. Hancock R.E., Farmer S.W., Li Z.S., Poole K. (1991) Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of E.␣coli. Antimicrob. Agents Chemother. 35:1309–1314

    PubMed  CAS  Google Scholar 

  24. Bryan L.E., Kwan S. (1983) Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob. Agents Chemother. 23:835–845

    PubMed  CAS  Google Scholar 

  25. Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  26. Fourmy D., Yoshizawa S., Puglisi J.D. (1998) Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 277:333–345

    Article  PubMed  CAS  Google Scholar 

  27. Noller H.F. (1991) Ribosomal RNA and translation. Annu. Rev. Biochem. 60:191–227

    Article  PubMed  CAS  Google Scholar 

  28. Fourmy D., Recht M.I., Blanchard S.C., Puglisi J.D. (1996) Structure of the A-site of E.␣coli. 16 S rRNA complexed with an aminoglycoside antibiotic. Science 274:1367–1371

    Article  PubMed  CAS  Google Scholar 

  29. Recht M.I., Fourmy D., Blanchard S.C., Dahlquist K.D., Puglisi J.D. (1996) RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J. Mol. Biol. 262:421–436

    Article  PubMed  CAS  Google Scholar 

  30. Cate J.H., Yusupov M.M., Yusupova G.Z., Earnest T.E., Noller H.F. (1999) X-ray crystal structure of 70S ribosome functional complexes. Science 285:2095–2104

    Article  PubMed  CAS  Google Scholar 

  31. Jiang L., Patel D.J. (1998) Solution structure of the tobramycin-RNA aptamer complex. Nat. Struct. Biol. 5:769–774

    Article  PubMed  CAS  Google Scholar 

  32. Xi H., Arya D.P. (2005) Recognition of triple helical nucleic acids by aminoglycosides. Curr. Med. Chem. Anticancer Agents 5:327–338

    Article  PubMed  CAS  Google Scholar 

  33. Hermann T., Westhoff E. (1998) Saccharide-RNA recognition. Biopolymers 48:155–165

    Article  PubMed  CAS  Google Scholar 

  34. Recht M.I., Douthwaite S., Puglisi J.D. (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138

    Article  PubMed  CAS  Google Scholar 

  35. Michael K., Wang H., Tor Y. (1999) Enhanced RNA binding of dimerized aminoglycosides. Bioorg. Med. Chem. 7:1361–1371

    Article  PubMed  CAS  Google Scholar 

  36. Welch K.T., Virga K.G., Whittemore N.A., Ozen C., Wright E., Brown C.L., Lee R.E., Serpersu E.H. (2005) Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Bioorg. Med. Chem. 13:6252–6363

    Article  PubMed  CAS  Google Scholar 

  37. Cho J., Hamasaki K., Rando R.R. (1998) The binding site of a specific aminoglycoside binding RNA molecule. Biochemistry 37:4985–4992

    Article  PubMed  CAS  Google Scholar 

  38. Pilch D.S., Kaul M., Barbieri C.M. (2005) Defining the basis for the specificity of aminoglycoside–rRNA recognition: a comparative study of drug binding to the A sites of Escherichia coli and human rRNA. J. Mol. Biol. 346:119–134

    Article  PubMed  CAS  Google Scholar 

  39. Hayashi S.F., Norcia L.J., Seibel S.B., Silvia A.M. (1997) Structure activity relationships of hygromycin A and its analogs: protein synthesis inhibition activity in a cell free system. J. Antibiot. (Tokyo) 50:514–521

    CAS  Google Scholar 

  40. Hotta K., Zhu C.B., Ogata T., Sunada A., Ishikawa J., Mizuno S., Kondo S. (1996) Enzymatic 2’-N-acetylation of arbekacin and antibiotic activity of its product. J. Antibiot. (Tokyo) 49:458–464

    CAS  Google Scholar 

  41. Shaw K.J., Rather P.N., Hare R.S., Miller G.H. (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138–163

    PubMed  CAS  Google Scholar 

  42. Llano-Sotelo B., Azucena E.F., Kotra L.P., Mobashery S., Chow C.S. (2002) Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem. Biol. 9:455–463

    Article  PubMed  CAS  Google Scholar 

  43. Mingeot-Leclercq M.-P., Glupczynski Y., Tulkens P.M. (1999) Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43:727–737

    PubMed  CAS  Google Scholar 

  44. Vakulenko S.B., Donabedian S.M., Voskresenskiy A.M., Zervos M.J., Lerner S.A., Chow J.W. (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob. Agents Chemother. 47(4):1423–1426

    Article  PubMed  CAS  Google Scholar 

  45. Zarrilli R., Tripodi M., Di Popolo A. et al. (2005) Molecular epidemiology of high-level amino glycoside-resistant enterococci isolated from patients in a university hospital in southern Italy. J. Antimicrob. Chemother. 56:827–835

    Article  PubMed  CAS  Google Scholar 

  46. Ahmed A.M., Shimamoto T. (2004) A plasmid-encoded class 1 integron carrying sat, a putative phosphoserine phosphatase gene and aadA2 from enterotoxigenic Escherichia coli O159 isolated in Japan. FEMS Microbiol. Lett. 235:243–248

    Article  PubMed  CAS  Google Scholar 

  47. Rather P.N., Munayyer H., Mann P.A., Hare R.S., Miller G.H., Shaw K.J. (1992) Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 69-Nacetyltransferase-Ib and IIa proteins. J. Bacteriol. 174:3196–3203

    PubMed  CAS  Google Scholar 

  48. Wu H.Y., Miller G.H., Blanco M.G, Hare RS, Shaw K.J. (1997) Cloning and characterization of an aminoglycoside 69-N-acetyltransferase gene from Citrobacter freundii which confers an altered resistance profile. Antimicrob. Agents Chemother. 41:2439–2447

    PubMed  CAS  Google Scholar 

  49. Aires J.R., Kohler T., Nikaido H., Plesiat P. (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 43:2624–2628

    PubMed  CAS  Google Scholar 

  50. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:3322–3327

    Article  PubMed  CAS  Google Scholar 

  51. Westbrock-Wadman S., Sherman D.R., Hickey M.J. et al. (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob. Agents Chemother. 43:2975–2983

    PubMed  CAS  Google Scholar 

  52. Livermore D.M. (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634–640

    Article  PubMed  CAS  Google Scholar 

  53. Poole K. (2005) Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56:20–51

    Article  PubMed  CAS  Google Scholar 

  54. Maravic G. (2004) Macrolide resistance based on the Erm-mediated rRNA methylation. Curr. Drug Targets Infect. Disord. 4:193–202

    Article  PubMed  CAS  Google Scholar 

  55. Doi Y., Yokoyama K., Yamane K. et al. (2004) Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring highlevel resistance to aminoglycosides. Antimicrob. Agents Chemother. 48:491–496

    Article  PubMed  CAS  Google Scholar 

  56. Galimand M., Sabtcheva S., Courvalin P., Lambert T. (2005) Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob. Agents Chemother. 49:2949–2953

    Article  PubMed  CAS  Google Scholar 

  57. Chow J.W. (2000) Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 31:586–599

    Article  PubMed  CAS  Google Scholar 

  58. Lester C.H., Frimodt-Moller N., Hammerum A.M. (2004) Conjugal transfer of aminoglycoside and macrolide resistance between Enterococcus faecium isolates in the intestine of streptomycin-treated mice. FEMS Microbiol. Lett. 235:385–389

    Article  PubMed  CAS  Google Scholar 

  59. Tomita H., Pierson C., Lim S.K., Clewell D.B., Ike Y. (2002) Possible connection between a widely disseminated conjugative gentamicin resistance (pMG1-like) plasmid and the emergence of vancomycin resistance in Enterococcus faecium. J. Clin. Microbiol. 40:3326–3333

    Article  PubMed  CAS  Google Scholar 

  60. Udo E.E., Al-Sweih N., John P., Jacob L.E., Mohanakrishnan S. (2004) Characterization of high-level aminoglycoside-resistant enterococci in Kuwait hospitals. Microb. Drug Resist. 10:139–145

    Article  PubMed  CAS  Google Scholar 

  61. Campo R.D., Ruiz-Garbajosa P., Sanchez-Moreno M.P. et al. (2003) Antimicrobial resistance in recent fecal enterococci from healthy volunteers and food handlers in Spain: genes and phenotypes. Microb. Drug Resist. 9:47–60

    Article  PubMed  CAS  Google Scholar 

  62. Donabedian S.M., Thal L.A., Hershberger E. et al. (2003) Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J. Clin. Microbiol. 41:1109–1113

    Article  PubMed  CAS  Google Scholar 

  63. Rybak L.P., Whitworth C.A. (2005) Ototoxicity: therapeutic opportunities. Drug Discov. Today 10:1313–1321

    Article  PubMed  CAS  Google Scholar 

  64. Rougier F., Claude D., Maurin M., Maire P. (2004) Aminoglycoside nephrotoxicity. Curr. Drug Targets 4:153–162

    Article  CAS  Google Scholar 

  65. Peloquin C.A., Berning S.E., Nitta A.T., Simone P.M., Goble M., Huitt G.A., Iseman M.D., Cook J.L., Curran-Everett D. (2004) Aminoglycoside toxicity: daily versus thrice weekly dosing for treatment of mycobacterial diseases. Clin. Infect. Dis. 38:1538–1544

    Article  PubMed  CAS  Google Scholar 

  66. Magnet S., Blanchard J.S. (2005) Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105:477–497

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad U. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakil, S., Khan, R., Zarrilli, R. et al. Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15, 5–14 (2008). https://doi.org/10.1007/s11373-007-9194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9194-y

Keywords

Navigation