Skip to main content

Advertisement

Log in

Cellular signals modulate alternative splicing

  • Published:
Journal of Biomedical Science

Abstract

Alternative splicing is a post-transcriptional mechanism that can substantially change the pattern of gene expression. Proper regulation of alternative splicing is important for cell physiology, and aberrant splicing may lead to clinical manifestations. Cellular signals or environmental stimuli can determine the outcome of alternative splicing through trans-acting splicing regulatory factors. Networks of signaling cascades may post-translationally modify these splicing factors, thereby altering their subcellular localization or activity and hence impacting pre-mRNA splicing. Moreover, some extracellular signals, mostly steroid hormones, may regulate alternative splicing through a transcription-coupled splicing mechanism. Nevertheless, further intensive investigation will be needed to fully understand the intricacies of signal-mediated alternative splicing control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black D.L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72:291–336

    Article  PubMed  CAS  Google Scholar 

  2. Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zhang Z., Toiber D., Thanaraj T.A., Soreq H. (2005) Function of alternative splicing. Gene 344:1–20

    Article  PubMed  CAS  Google Scholar 

  3. Smith C.W., Valcarcel J. (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25: 381–388

    Article  PubMed  CAS  Google Scholar 

  4. Wilson K.F., Cerione R.A. (2000) Signal transduction and post-transcriptional gene expression. Biol. Chem. 381: 357–365

    Article  PubMed  CAS  Google Scholar 

  5. Shifrin V.I., Neel B.G. (1993) Growth factor-inducible alternative splicing of nontransmembrane phosphotyrosine phosphatase PTP-1B pre-mRNA. J. Biol. Chem. 268: 25376–25384

    PubMed  CAS  Google Scholar 

  6. Stamm S. (2002) Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum. Mol. Genet. 11: 2409–2416

    Article  PubMed  CAS  Google Scholar 

  7. Shin C., Manley J.L. (2004) Cell signalling and the control of pre-mRNA splicing. Nat. Rev. Mol. Cell Biol. 5: 727–738

    Article  PubMed  CAS  Google Scholar 

  8. Srebrow A., Kornblihtt A.R. (2006) The connection between splicing and cancer. J. Cell Sci. 119:2635–2641

    Article  PubMed  CAS  Google Scholar 

  9. Auboeuf D., Honig A., Berget S.M., O’Malley B.W. (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulanors. Science 298:416–419

    Article  PubMed  CAS  Google Scholar 

  10. Dowhan D.H., Hong E.P., Auboeuf D., Dennis A.P., Wilson M.M., Berget S.M., O’Malley B.W. (2005) Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta. Mol. Cell 17: 429–439

    Article  PubMed  CAS  Google Scholar 

  11. Lynch K.W. (2004) Consequences of regulated pre-mRNA splicing in the immune system. Nat. Rev. Immunol. 4: 931–940

    Article  PubMed  CAS  Google Scholar 

  12. Buratti E., Baralle M., Baralle F.E. (2006) Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucl. Acids Res. 34: 3494–3510

    Article  PubMed  CAS  Google Scholar 

  13. Matter N., Herrlich P. and Konig H. (2002) Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420: 691–695

    Article  PubMed  CAS  Google Scholar 

  14. Matter N., Marx M., Weg-Remers S., Ponta H., Herrlich P. and Konig H. (2000) Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex by oncogenic signaling pathways. J. Biol. Chem. 275: 35353–35360

    Article  PubMed  CAS  Google Scholar 

  15. Cheng C., Sharp P.A. (2006) Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol. Cell. Biol. 26: 362–370

    Article  PubMed  CAS  Google Scholar 

  16. Weg-Remers S., Ponta H., Herrlich P., Konig H. (2002) Antagonistic signalling pathways regulate alternative splicing of CD44 in T cells. Ann. N. Y. Acad. Sci. 973:112–115

    Article  PubMed  CAS  Google Scholar 

  17. Gui J.F., Lane W.S., Fu X.D. (1994) A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369: 678–682

    Article  PubMed  CAS  Google Scholar 

  18. Colwill K., Pawson T., Andrews B., Prasad J., Manley J.L., Bell J.C., Duncan P.I. (1996) The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15: 265–275

    PubMed  CAS  Google Scholar 

  19. Rossi F., Labourier E., Forne T., Divita G., Derancourt J., Riou J.F., Antoine E., Cathala G., Brunel C., Tazi J. (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381: 80–82

    Article  PubMed  CAS  Google Scholar 

  20. Ko T.K., Kelly E., Pines J. (2001) CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. J. Cell Sci. 114: 2591–2603

    PubMed  CAS  Google Scholar 

  21. Dellaire G., Makarov E.M., Cowger J.J., Longman D., Sutherland H.G., Luhrmann R., Torchia J., Bickmore W.A. (2002) Mammalian PRP4 kinase copurifies and interacts with components of both the U5 snRNP and the N-CoR deacetylase complexes. Mol. Cell. Biol. 22:5141–5156

    Article  PubMed  CAS  Google Scholar 

  22. Hu D., Mayeda A., Trembley J.H., Lahti J.M., Kidd V.J. (2002) CDK11 complexes promote pre-mRNA splicing. J. Biol. Chem. 278: 8623–8629

    Article  PubMed  CAS  Google Scholar 

  23. Xiao S.H., Manley J.L. (1998) Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 17: 6359–6367

    Article  PubMed  CAS  Google Scholar 

  24. Prasad J., Colwill K., Pawson T., Manley J.L. (1999) The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell. Biol. 19:6991–7000

    PubMed  CAS  Google Scholar 

  25. Kamachi M., Le T.M., Kim S.J., Geiger M.E., Anderson P., Utz P.J. (2002) Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J. Exp. Med. 196:1213–1225

    Article  PubMed  CAS  Google Scholar 

  26. Mikolajczyk M., Nelson M.A., Regulation of stability of cyclin-dependent kinase CDK11p110 and a caspase-processed form, CDK11p46, by Hsp90. Biochem. J. 384: 461–467, 2004.

    Google Scholar 

  27. Graveley B.R. (2000) Sorting out the complexity of SR protein functions. RNA 6:1196–1211

    Article  Google Scholar 

  28. Patel N.A., Kaneko S., Apostolatos H.S., Bae S.S., Watson J.E., Davidowitz K., Chappell D.S., Birnbaum M.J., Cheng J.Q., Cooper D.R. (2005) Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J. Biol. Chem. 280:14302–14309

    Article  PubMed  CAS  Google Scholar 

  29. Chalfant C.E., Ogretmen B., Galadari S., Kroesen B.J., Pettus B.J., Hannun Y.A. (2001) FAS activation induces dephosphorylation of SR proteins: dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J. Biol. Chem. 276: 44848–44855

    Article  PubMed  CAS  Google Scholar 

  30. Shin C., Manley J.L. (2004) Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427: 553–558

    Article  PubMed  CAS  Google Scholar 

  31. Bedford M.T., Richard S. (2005) Arginine methylation an emerging regulator of protein function. Mol. Cell 18: 263–272

    Article  PubMed  CAS  Google Scholar 

  32. Nichols R.C., Wang X.W., Tang J., Hamilton B.J., High F.A., Herschman H.R. and Rigby W.F. (2000) The RGG domain in hnRNP A2 affects subcellular localization. Exp. Cell Res. 256: 522–532

    Article  PubMed  CAS  Google Scholar 

  33. Boisvert F.M., Cote J., Boulanger M.C., Cleroux P., Bachand F., Autexier C., Richard S. (2002) Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J. Cell Biol. 159: 957–969

    Article  PubMed  CAS  Google Scholar 

  34. Xu C., Henry M.F. (2004) Nuclear export of hnRNP Hrp1p and nuclear export of hnRNP Npl3p are linked and influenced by the methylation state of Npl3p. Mol. Cell. Biol. 24: 10742–10756

    Article  PubMed  CAS  Google Scholar 

  35. Cheng D., Côté J., Shaaban S., Bedford M.T. (2007) The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell 25:71–83

    Article  PubMed  CAS  Google Scholar 

  36. Bellare P., Kutach A.K., Rines A.K., Guthrie C., Sontheimer E.J. (2006) Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. RNA 12:292–302

    Article  PubMed  CAS  Google Scholar 

  37. Berro R., Kehn K., de la Fuente C., Pumfery A., Adair R., Wade J., Colberg-Poley A.M., Hiscott J., Kashanchi F. (2006) Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J. Virol. 80:3189–3204

    Article  PubMed  CAS  Google Scholar 

  38. Li T., Evdokimov E., Shen R.F., Chao C.C., Tekle E., Wang T., Stadtman E.R., Yang D.C., Chock P.B. (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. USA 101:8551–8556

    Article  PubMed  CAS  Google Scholar 

  39. Daoud R., Mies G., Smialowska A., Olah L., Hossmann K.A., Stamm S. (2002) Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. J. Neurosci. 22: 5889–1899

    PubMed  CAS  Google Scholar 

  40. van der Houven van Oordt W., Diaz-Meco M.T., Lozano J., Krainer A.R., Moscat J., Caceres J.F. (2000) The MKK[3/6]-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell Biol. 149:307–316

    Article  Google Scholar 

  41. Blaustein M., Pelisch F., Tanos T., Munoz M.J., Wengier D., Quadrana L., Sanford J.R., Muschietti J.P., Kornblihtt A.R., Caceres J.F., Coso O.A., Srebrow A. (2005) Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat. Struct. Mol. Biol. 12: 1037–1044

    Article  PubMed  CAS  Google Scholar 

  42. Edenfeld G., Volohonsky G., Krukkert K., Naffin E., Lammel U., Grimm A., Engelen D., Reuveny A., Volk T., Klambt C. (2006) The splicing factor crooked nect associates with the RNA-binding protein HOW to control glial cell maturation in Drosophila. Neuron 52:969–980

    Article  PubMed  CAS  Google Scholar 

  43. Kornblihtt A.R., de la Mata M., Fededa J.P., Munoz M.J., Nogues G. (2004) Multiple links between transcription and splicing. RNA 10: 1489–1498

    Article  PubMed  CAS  Google Scholar 

  44. Ge H., Si Y., Wolffe A.P. (1998) A novel transcriptional coactivatior, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol. Cell 2:751–759

    Article  PubMed  CAS  Google Scholar 

  45. Lai M.C., Teh B.H., Tarn W.Y. (1999) A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J. Biol. Chem. 274:11832–11841

    CAS  Google Scholar 

  46. Monsalve M., Wu Z., Adelmant G., Puigserver P., Fan M., Spiegelman B.M. (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 6:307–316

    Article  PubMed  CAS  Google Scholar 

  47. Auboeuf D., Dowhan D.H., Li X., Larkin K., Ko L., Berget S.M. and O’Malley B.W. (2004) CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol. Cell. Biol. 24:442–453

    Article  PubMed  CAS  Google Scholar 

  48. Chen H.H., Wang Y.C., Fann M.J. (2006) Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol. 26:2736–2745

    Article  PubMed  CAS  Google Scholar 

  49. Sgambato V., Minassian R., Nairn A.C., Hyman S.E. (2003) Regulation of ania-6 splice variants by distinct signaling pathways in striatal neurons. J. Neurochem. 86:153–164

    Article  PubMed  CAS  Google Scholar 

  50. Nissim-Rafinia M., Kerem B. (2002) Splicing regulation as a potential genetic modifier. Trends Genet. 18:123–127

    Article  PubMed  CAS  Google Scholar 

  51. Bracco L., Kearsey J. (2003) The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotech. 21:346–353

    Article  CAS  Google Scholar 

  52. Hagiwara M. (2005) Alternative splicing: a new drug target of the post-genome era. Biochim. Biophys. Acta. 1754:324–331

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Wen-Cheng Chang and Dr. Hung-Hsi Chen for scientific comments on the manuscript and Dr. Tim C. Taylor for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woan-Yuh Tarn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarn, WY. Cellular signals modulate alternative splicing. J Biomed Sci 14, 517–522 (2007). https://doi.org/10.1007/s11373-007-9161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9161-7

Keywords

Navigation