Skip to main content

Advertisement

Log in

Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures

  • Published:
Journal of Biomedical Science

Summary

It is known that estrogen can protect neurons from excitotoxicity. Since isoflavones possess estrogen-like activity, it is of interest to determine whether isoflavones can also protect neurons from glutamate-induced neuronal injury. Morphological observation and lactate dehydrogenase (LDH) release assay were used to estimate the cellular damage. It is surprising that, contrary to estrogen, isoflavones, specifically genistein and daidzein, are toxic to primary neuronal culture at high concentration. Treatment of neurons with 50 μM genistein and daidzein for 24 h increased LDH release by 90% and 67%, respectively, indicating a significant cellular damage. Under the same conditions, estrogen such as 17β-estradiol did not show any effect on primary culture of brain cells. At 100 μM, both genistein and daidzein increased LDH release by 2.6- and 3-fold, respectively with a 30-min incubation. Furthermore, both genistein and daidzein at 50 μM increased the intracellular calcium level, [Ca2+]i, significantly. To determine their mode of action, genistein and daidzein were tested on glutamate and GABAA receptor binding. Both genistein and daidzein were found to have little effect on glutamate receptor binding, while the binding of [3H]muscimol to GABAA receptors was markedly inhibited. However, 17β-estradiol did not affect GABAA receptor binding suggesting that the toxic effect of genistein and daidzein could be due to their inhibition of the GABAA receptor resulting in further enhancement of excitation by glutamate and leading to cellular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soghomonian J.J., Laprade N., Glutamate decarboxylase (GAD67 and GAD65) gene expression is increased in a subpopulation of neurons in the putamen of Parkinsonian monkeys. Synapse 27: 122–132, 1997

    Article  PubMed  CAS  Google Scholar 

  2. Wu J.Y., Bird E.D., Chen M.S., Huang W.M., Abnormalities of neurotransmitter enzymes in Huntington’s chorea. Neurochem. Res. 4: 575–586, 1979

    Article  PubMed  CAS  Google Scholar 

  3. Marczynski T.J., GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res. Bull. 45: 341–379, 1998

    Article  PubMed  CAS  Google Scholar 

  4. Kash S.F., Johnson R.S., Tecott L.H., Noebels J.L., Mayfield R.D., Hanahan D., Baekkeskov S., Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA. 94: 14060–14065, 1997

    Article  PubMed  CAS  Google Scholar 

  5. Brinton R.D., Estrogens and Alzheimer’s disease. In: Marwah J. and Teitelbaum H. (Eds), Advances in Neurodegenerative Disorders, Vol. 2. Prominent Press, 1998, pp. 99–130

  6. Sherwin B.B., Oestrogen and cognitive function throughout the female lifespan. Novartis Found Symp. 230: 188–196; discussion 196–201, 2000

    Google Scholar 

  7. Birg S.J., Is there a role for estrogen replacement therapy in the prevention and treatment of dementia? J. Am. Geriatr. Soc. 44: 878–880, 1996

    Google Scholar 

  8. Henderson V.W., Hormone Therapy and the Brain: A Clinical Perspective on the Role of Estrogen, 2000, Parthenon Publishing, New York

    Google Scholar 

  9. Mooradain A.D., Antioxidant properties of steroids. J. Steriod Biochem. Mol. Biol. 45: 509–511, 1993

    Article  Google Scholar 

  10. Sugioka K., Shimosegawa Y., Nakano M., Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett. 210: 37–39, 1987

    Article  PubMed  CAS  Google Scholar 

  11. Akiyama T., Ogawara H., Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. 201: 362–370, 1991

    Article  PubMed  CAS  Google Scholar 

  12. Constaninou A., Huberman E., Genistein as an inducer of tumor cell differentiation: possible mechanisms of action. Proc. Soc. Exp. Biol. Med. 208: 109–115, 1995

    Google Scholar 

  13. Kim H., Peterson T.G., Barnes S., Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am. J. Clin. Nutr. 68: 1418S–1425S, 1998

    PubMed  CAS  Google Scholar 

  14. Brzezinski A., Debi A., Phytoestrigens: the “natural” selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol. 85: 47–51, 1999

    Article  PubMed  CAS  Google Scholar 

  15. Osborne C.K., Zhao H., Fuqua S.A., Selective estrogen receptor modulators: structure, function, and clinical use. J. Clin. Oncol. 18: 3172–3186, 2000

    PubMed  CAS  Google Scholar 

  16. An J., Tzagarakis-Foster C., Scharschmidt T.C., Lomri N., Leitman D.C., Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J. Biol. Chem. 276: 17808–17814, 2001

    Article  PubMed  CAS  Google Scholar 

  17. Pagliacci M.C., Smacchia M., Migliorati G., Grignani F., Riccardi C., Nicoletti I., Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur. J. Cancer. 30A: 1675–1682, 1994

    Article  PubMed  CAS  Google Scholar 

  18. Dubal D.B., Shughrue P.J., Wilson M.E., Merchenthaler I., Wise P.M., Kindy M.S., Wise P.M., Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors. J. Neurosci. 19: 6385–6393, 1999

    PubMed  CAS  Google Scholar 

  19. Dubal D.B., Zhu H., Yu J., Rau S.W., Shughrue P.J., Merchenthaler I., Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury. Proc. Natl. Acad. Sci. USA. 98: 1952–1957, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Lee Y.H., Deupree D.L., Chen S.C., Kao L.S., Wu J.Y., Role of Ca2+ in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-mediated polyphosphoinositide turnover in primary neuronal cultures. J. Neurochem. 62: 2325–2332, 1994

    Article  PubMed  CAS  Google Scholar 

  21. Koh J.Y., Choi D.W., Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Methods 20: 83–90, 1987

    Article  PubMed  CAS  Google Scholar 

  22. Chen W.Q., Jin H., Nguyen M., Carr J., Lee Y.J., Hsu C.C., Faiman M.D., Schloss J.V., Wu J.Y., Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J. Neurosci. Res. 66: 612–619, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Liao C.C., Lin H.S., Liu J.Y., Hibbard L.S., Wu J.Y., Purification and characterization of a benzodiazepine-like substance from mammalian brain. Neurochem. Res. 14: 345–352, 1989

    Article  PubMed  CAS  Google Scholar 

  24. Martin P.M., Horwitz K.B., Ryan D.S., McGuire W.L., Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology. 103: 1860–1867, 1978

    Article  PubMed  CAS  Google Scholar 

  25. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y., Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262: 5592–5595, 1987

    PubMed  CAS  Google Scholar 

  26. Markovits J., Linassier C., Fosse P., Coouprie J., Pierre J., Jacquemin-Sablon A., Saucier J.M., Le Pecq J.B., Larsen A.K., Inhibition effects of the tyrosine kinase inhibitor genistein n mammalian DNA topoisomerase II, Cancer Res. 49: 5111–5117, 1989

    PubMed  CAS  Google Scholar 

  27. Pagliacci M.C., Smacchia M., Migliorati G., Grignani F., Riccardi C., Nicoletti I., Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur. J. Cancer. 30A: 1675–1682, 1994

    Article  PubMed  CAS  Google Scholar 

  28. Huang R.Q., Fang M.J., Dillon G.H., The tyrosine kinase inhibitor genistein directly inhibits GABAA receptors. Brain Res. Mol. Brain Res. 67: 177–183, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Wu H., Jin Y., Wei J., Jin H., Sha D., Wu J.Y., Mode of action of taurine as a neuroprotector. Brain Res. 1038: 123–131, 2005

    Article  PubMed  CAS  Google Scholar 

  30. Wang C., Davis N., Colvin R.A. Genistein inhibits Na+/Ca2+ exchange activity in primary rat cortical neuron culture. Biochem. Biophys. Res. Commun. 223: 86–90, 1997

    Article  Google Scholar 

  31. Linford N.J., Yang Y., Cook D.G., Dors D.M., Neuronal apoptosis resulting from high doses of the isoflavone genistein: role for calcium and P42/44 mitogen-activated protein kinase. J. Pharmacol. Exp. Ther. 299: 67–75, 2001

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health Grant NS37851, National Science Foundation Grant IBN-9723079, and the Schmidt Family Foundation at Florida Atlantic University. We would like to thank Wanda Dominger for excellent assistance in editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Wu.

Additional information

Ying Jin, Heng Wu contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y., Wu, H., Cohen, E.M. et al. Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures. J Biomed Sci 14, 275–284 (2007). https://doi.org/10.1007/s11373-006-9142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9142-2

Keywords

Navigation