Skip to main content

Advertisement

Log in

Thymus and aging: morphological, radiological, and functional overview

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abe K, Ito T (1970) Fine structure of small lymphocytes in the thymus of the mouse: qualitative and quantitative analysis by electron microscopy. Z Zellforsch Mikrosk Anat 110:321–335

    CAS  PubMed  Google Scholar 

  • Ackman JB, Wu CC (2011) MRI of the thymus. AJR Am J Roentgenol 197:W15–W20

    PubMed  Google Scholar 

  • Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252

    CAS  PubMed  Google Scholar 

  • Ahsan F, Allison R, White J (2010) Ectopic cervical thymus: case report and review of pathogenesis and management. J Laryngol Otol 124:694–697

    PubMed  Google Scholar 

  • al-Shawaf AA, Kendall MD, Cowen T (1991) Identification of neural profiles containing vasoactive intestinal polypeptide, acetylcholinesterase and catecholamines in the rat thymus. J Anat 174:131–143

    CAS  PubMed  Google Scholar 

  • Altintas MM, Nayer B, Walford EC, Johnson KB, Gaidosh G, Reiser J, De La Cruz-Munoz N, Ortega LM, Nayer A (2012) Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice. Lipids Health Dis 11:21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson M, Anderson SK, Farr AG (2000) Thymic vasculature: organizer of the medullary epithelial compartment? Int Immunol 12:1105–1110

    CAS  PubMed  Google Scholar 

  • Appay V, Sauce D, Prelog M (2010) The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals. Aging (Albany NY) 2:78–81

    CAS  Google Scholar 

  • Ardavín C (1997) Thymic dendritic cells. Immunol Today 18:350–361

    PubMed  Google Scholar 

  • Ardavín C, Martínez del Hoyo G, Martín P, Anjuère F, Arias CF, Marín AR, Ruiz S, Parrillas V, Hernández H (2001) Origin and differentiation of dendritic cells. Trends Immunol 22:691–700

    PubMed  Google Scholar 

  • Ardavin C, Wu L, Li CL, Shortman K (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362:761–763

    CAS  PubMed  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    CAS  PubMed  Google Scholar 

  • Aw D, Palmer DB (2012) It's not all equal: a multiphasic theory of thymic involution. Biogerontology 13:77–81

    PubMed  Google Scholar 

  • Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB (2008) Architectural changes in the thymus of aging mice. Aging Cell 7:158–167

    CAS  PubMed  Google Scholar 

  • Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120:435–446

    CAS  PubMed  Google Scholar 

  • Aw D, Silva AB, Palmer DB (2010) The effect of age on the phenotype and function of developing thymocytes. J Comp Pathol 142(Suppl 1):S45–S59

    CAS  PubMed  Google Scholar 

  • Aw D, Taylor-Brown F, Cooper K, Palmer DB (2009) Phenotypical and morphological changes in the thymic microenvironment from ageing mice. Biogerontology 10:311–322

    PubMed  Google Scholar 

  • Barger JL, Walford RL, Weindruch R (2003) The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol 38:1343–1351

    PubMed  Google Scholar 

  • Bauer ME, Jeckel CM, Luz C (2009) The role of stress factors during aging of the immune system. Ann N Y Acad Sci 1153:139–152

    CAS  PubMed  Google Scholar 

  • Bearman RM, Bensch KG, Levine GD (1975) The normal human thymic vasculature: an ultrastructural study. Anat Rec 183:485–497

    CAS  PubMed  Google Scholar 

  • Bellinger DL, Felten SY, Felten DL (1988) Maintenance of noradrenergic sympathetic innervation in the involuted thymus of the aged Fischer 344 rat. Brain Behav Immunol 2:133–150

    CAS  Google Scholar 

  • Bellinger DL, Lorton D, Felten SY, Felten DL (1992) Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int J Immunopharmacol 14:329–344

    CAS  PubMed  Google Scholar 

  • Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16:803–814

    CAS  PubMed  Google Scholar 

  • Benveniste MF, Rosado-de-Christenson ML, Sabloff BS, Moran CA, Swisher SG, Marom EM (2011) Role of imaging in the diagnosis, staging, and treatment of thymoma. Radiographics 31:1847–1861, discussion 1861–1863

    PubMed  Google Scholar 

  • Berthelot JM, le Goff B, Maugars Y (2010) Thymic Hassall's corpuscles, regulatory T-cells, and rheumatoid arthritis. Semin Arthritis Rheumaforsch 39:347–355

    CAS  Google Scholar 

  • Blackburn CC, Augustine CL, Li R, Harvey RP, Malin MA, Boyd RL, Miller JF, Morahan G (1996) The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A 93:5742–5746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boehm T, Bleul CC (2007) The evolutionary history of lymphoid organs. Nat Immunol 8:131–135

    CAS  PubMed  Google Scholar 

  • Bravo-Nuevo A, O'Donnell R, Rosendahl A, Chung JH, Benjamin LE, Odaka C (2011) RhoB deficiency in thymic medullary epithelium leads to early thymic atrophy. Int Immunol 23:593–600

    CAS  PubMed  Google Scholar 

  • Brelińska R (2003) Thymic epithelial cells in age-dependent involution. Microsc Res Tech 62:488–500

    PubMed  Google Scholar 

  • Brelińska R, Jaroszewicz A, Kowalska K (2002a) Age-related changes in rat thymic epithelial cells. Folia Histochem Cytobiol 40:173–174

    PubMed  Google Scholar 

  • Brelińska R, Ostalska D, Kaczmarek E, Kowalska K (2002b) Stages of the rat thymic medulla development in foetal period. Folia Histochem Cytobiol 40:171–172

    PubMed  Google Scholar 

  • Brelińska R, Warchol JB (1997) Thymic nurse cells: their functional ultrastructure. Microsc Res Tech 38:250–266

    PubMed  Google Scholar 

  • Brimnes MK, Jensen T, Jørgensen TN, Michelsen BK, Troelsen J, Werdelin O (2002) Low expression of insulin in the thymus of non-obese diabetic mice. J Autoimmun 19:203–213

    PubMed  Google Scholar 

  • Bryson JL, Coles MC, Manley NR (2011) A method for labeling vasculature in embryonic mice. J Vis Exp (56). pii: 3267

  • Buckland J, Pennington DJ, Bruno L, Owen MJ (2000) Co-ordination of the expression of the protein tyrosine kinase p56(lck) with the pre-T cell receptor during thymocyte development. Eur J Immunol 30:8–18

    CAS  PubMed  Google Scholar 

  • Bulckaen H, Prévost G, Boulanger E, Robitaille G, Roquet V, Gaxatte C, Garçon G, Corman B, Gosset P, Shirali P, Creusy C, Puisieux F (2008) Low-dose aspirin prevents age-related endothelial dysfunction in a mouse model of physiological aging. Am J Physiol Heart Circ Physiol 294:H1562–H1570

    CAS  PubMed  Google Scholar 

  • Bulloch K, McEwen BS, Diwa A, Radojcic T, Hausman J, Baird S (1994) The role of calcitonin gene-related peptide in the mouse thymus revisited. Ann N Y Acad Sci 741:129–136

    CAS  PubMed  Google Scholar 

  • Bulloch K, Pomerantz W (1984) Autonomic nervous system innervation of thymic-related lymphoid tissue in wildtype and nude mice. J Comp Neurol 228:57–68

    CAS  PubMed  Google Scholar 

  • Büyükyavuz I, Otçu S, Karnak I, Akçören Z, Senocak ME (2002) Ectopic thymic tissue as a rare and confusing entity. Eur J Pediatr Surg 2:327–329

    Google Scholar 

  • Cahill DR (1998) Anomalous thymic branch of the right common carotid artery. Clin Anat 11:346–348

    CAS  PubMed  Google Scholar 

  • Castle SC (2000) Impact of age-related immune dysfunction on risk of infections. Z Gerontol Geriatr 33:341–349

    CAS  PubMed  Google Scholar 

  • Cavallotti C, Artico M, Cavallotti D (1999) Occurrence of adrenergic nerve fibers and of noradrenaline in thymus gland of juvenile and aged rats. Immunol Lett 70:53–62

    CAS  PubMed  Google Scholar 

  • Cavallotti C, D'Andrea V, Tonnarini G, Cavallotti C, Bruzzone P (2008) Age-related changes in the human thymus studied with scanning electron microscopy. Microsc Res Tech 71:573–578

    PubMed  Google Scholar 

  • Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP, Newbury-Ecob R, Hennekam RC, Van Buggenhout G, van Haeringen A, Woods CG, van Essen AJ, de Waal VG, Haber DA, Yang A, McKeon F, Brunner HG, van Bokhoven H (1999) Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 99:143–153

    CAS  PubMed  Google Scholar 

  • Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113:567–574

    CAS  PubMed  Google Scholar 

  • Chen Y, Qiao S, Tuckermann J, Okret S, Jondal M (2010) Thymus-derived glucocorticoids mediate androgen effects on thymocyte homeostasis. FASEB J 24:5043–5051

    CAS  PubMed  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24:309–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chowhan AK, Kinnera VS, Yootla M, Reddy MK (2010) Cervical ectopic thymus masquerading as metastatic thyroid papillary carcinoma. Malays J Pathol 32:65–68

    PubMed  Google Scholar 

  • Csorba TR, Lyon AW, Hollenberg MD (2010) Autoimmunity and the pathogenesis of type 1 diabetes. Crit Rev Clin Lab Sci 47:51–71

    CAS  PubMed  Google Scholar 

  • Cuddihy AR, Ge S, Zhu J, Jang J, Chidgey A, Thurston G, Boyd R, Crooks GM (2009) VEGF-mediated cross-talk within the neonatal murine thymus. Blood 113:2723–2731

    CAS  PubMed  Google Scholar 

  • Dakic A, Shao QX, D'Amico A, O'Keeffe M, Chen WF, Shortman K, Wu L (2004) Development of the dendritic cell system during mouse ontogeny. J Immunol 172:1018–1027

    CAS  PubMed  Google Scholar 

  • Deitch EA, Ananthakrishnan P, Cohen DB, Xu da Z, Feketeova E, Hauser CJ (2006) Neutrophil activation is modulated by sex hormones after trauma-hemorrhagic shock and burn injuries. Am J Physiol Heart Circ Physiol 291:H1456–H1465

    Google Scholar 

  • den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AF, Ackermans MT, Miedema F, Borghans JA, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36:288–297

    Google Scholar 

  • Di Marino V, Argème M, Brunet C, Coppens R, Bonnoit J (1987) Macroscopic study of the adult thymus. Surg Radiol Anat 9:51–62

    PubMed  Google Scholar 

  • Dixit VD (2012) Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence. Semin Immunol 24(5):321–330

    CAS  PubMed  Google Scholar 

  • Dooley J, Liston A (2012) Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol 42:1073–1079

    Google Scholar 

  • Douagi I, André I, Ferraz JC, Cumano A (2000) Characterization of T cell precursor activity in the murine fetal thymus: evidence for an input of T cell precursors between days 12 and 14 of gestation. Eur J Immunol 30:2201–2210

    CAS  PubMed  Google Scholar 

  • Krishna MJV, Subhadra VD (2012) Morphological features of human thymus glands from foetal to old age. Int J Biol Med Res 3:1502–1505

    Google Scholar 

  • Ebbesen P, Christensen HE (1972) Foa-Kurloff cells in the Hassal bodies of oestrogenized guinea-pigs. Acta Pathol Microbiol Scand A 80:600–602

    CAS  PubMed  Google Scholar 

  • Ezaki T, Uehara Y (1997) Thymic nurse cells forming a dynamic microenvironment in spontaneous thymoma BUF/Mna rats. Arch Histol Cytol 60:39–51

    CAS  PubMed  Google Scholar 

  • Fabris N, Mocchegiani E, Provinciali M (1997) Plasticity of neuro-endocrine-thymus interactions during aging--a minireview. Cell Mol Biol (Noisy-le-grand) 43:529–541

    CAS  Google Scholar 

  • Fatani JA, Qayyum MA, Mehta L, Singh U (1986) Parasympathetic innervation of the thymus: a histochemical and immunocytochemical study. J Anat 147:115–119

    CAS  PubMed  Google Scholar 

  • Fedorova ES, Poliakova VO, Konovalov SS, Kvetnoĭ IM (2009) Expression of serotonin and vessel endothelial growth factor (VEGF) in human thymus in aging involution. Adv Gerontol 22:167–171

    CAS  PubMed  Google Scholar 

  • Fernandes G, Handwerger BS, Yunis EJ, Brown DM (1978) Immune response in the mutant diabetic C57BL/Ks-dt + mouse. Discrepancies between in vitro and in vivo immunological assays. J Clin Invest 61:243–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrando-Martínez S, Ruiz-Mateos E, Hernández A, Gutiérrez E, Rodríguez-Méndez Mdel M, Ordoñez A, Leal M (2011) Age-related deregulation of naive T cell homeostasis in elderly humans. Age (Dordr) 33:197–207

    Google Scholar 

  • Flegal KM, Graubard BI, Williamson DF, Gail MH (2006) Weight and mortality. Hypertension 47:e6

    PubMed  Google Scholar 

  • Flegal KM, Graubard BI, Williamson DF, Gail MH (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298:2028–2037

    CAS  PubMed  Google Scholar 

  • Flomerfelt FA, El Kassar N, Gurunathan C, Chua KS, League SC, Schmitz S, Gershon TR, Kapoor V, Yan XY, Schwartz RH, Gress RE (2010) Tbata modulates thymic stromal cell proliferation and thymus function. J Exp Med 207:2521–2532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP (1999) Analysis of the human thymic perivascular space during aging. J Clin Invest 104:1031–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forsberg JG (2000) Neonatal estrogen treatment and its consequences for thymus development, serum level of autoantibodies to cardiolipin, and the delayed-type hypersensitivity response. J Toxicol Environ Health A 60:185–213

    CAS  PubMed  Google Scholar 

  • Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M (2008) Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol 180:3183–3189

    CAS  PubMed  Google Scholar 

  • Franceschi C, Bonafè M (2003) Centenarians as a model for healthy aging. Biochem Soc Trans 31:457–461

    CAS  PubMed  Google Scholar 

  • Fujita Y, Murakami M, Ogawa Y, Masuzaki H, Tanaka M, Ozaki S, Nakao K, Mimori T (2002) Leptin inhibits stress-induced apoptosis of T lymphocytes. Clin Exp Immunol 128:21–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gawande RS, Khurana A, Messing S, Zhang D, Castañeda RT, Goldsby RE, Hawkins RA, Daldrup-Link HE (2012) Differentiation of normal thymus from anterior mediastinal lymphoma and lymphoma recurrence at pediatric PET/CT. Radiology 262:613–622

    PubMed  Google Scholar 

  • Ghali WM, Abdel-Rahman S, Nagib M, Mahran ZY (1980) Intrinsic innervation and vasculature of pre- and post-natal human thymus. Acta Anat (Basel) 108:115–123

    CAS  Google Scholar 

  • Gill J, Malin M, Holländer GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3:635–642

    CAS  PubMed  Google Scholar 

  • Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TS, Chidgey AP, Boyd RL (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80:1604–1613

    PubMed  Google Scholar 

  • Goldman KP, Park CS, Kim M, Matzinger P, Anderson CC (2005) Thymic cortical epithelium induces self tolerance. Eur J Immunol 35:709–717

    CAS  PubMed  Google Scholar 

  • Gray D, Abramson J, Benoist C, Mathis D (2007) Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204:2521–2528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785

    CAS  PubMed  Google Scholar 

  • Gray DH, Ueno T, Chidgey AP, Malin M, Goldberg GL, Takahama Y, Boyd RL (2005) Controlling the thymic microenvironment. Curr Opin Immunol 17:137–143

    CAS  PubMed  Google Scholar 

  • Griffith AV, Fallahi M, Venables T, Petrie HT (2012) Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11:169–177

    CAS  PubMed  Google Scholar 

  • Gruia AT, Barbu-Tudoran L, Mic AA, Ordodi VL, Paunescu V, Mic FA (2011) Arachidonic acid accumulates in the stromal macrophages during thymus involution in diabetes. Histochem Cell Biol 136:79–92

    CAS  PubMed  Google Scholar 

  • Gui J, Mustachio LM, Su DM, Craig RW (2012) Thymus Size and Age-related Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis 3:280–290

    PubMed Central  PubMed  Google Scholar 

  • Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM (2007) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 19:1201–1211

    CAS  PubMed  Google Scholar 

  • Hannestad J, García-Suárez O, Huerta JJ, Esteban I, Naves FJ, Vega JA (1997) TrkA neutrophin receptor protein in the rat and human thymus. Anat Rec 249:373–379

    CAS  PubMed  Google Scholar 

  • Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209

    PubMed  Google Scholar 

  • Haynes BF, Sempowski GD, Wells AF, Hale LP (2000) The human thymus during aging. Immunol Res 22:253–261

    CAS  PubMed  Google Scholar 

  • Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 175:2982–2993

    CAS  PubMed  Google Scholar 

  • Herman TE, Siegel MJ (2009) Cervical ectopic thymus. J Perinatol 29:173–174

    CAS  PubMed  Google Scholar 

  • Hernández-López C, Varas A, Sacedón R, Martínez VG, Hidalgo L, Valencia J, Zapata AG, Vicente A (2010) The CXCL12/CXCR4 pair in aged human thymus. Neuroimmunomodulation 17:217–220

    PubMed  Google Scholar 

  • Hick RW, Gruver AL, Ventevogel MS, Haynes BF, Sempowski GD (2006) Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide- induced thymic atrophy. J Immunol 177:169–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A (2008) The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 252:122–138

    CAS  PubMed  Google Scholar 

  • Hirokawa K, Saitoh K, Hatakeyama S (1983) Enzyme histochemical study on human thymus and its age change. Acta Pathol Jpn 33:275–285

    CAS  PubMed  Google Scholar 

  • Hofer J, Hofer S, Zlamy M, Jeller V, Koppelstaetter C, Brandstätter A, Kern H, Köhle J, Zimmerhackl LB, Prelog M (2009) Elevated proportions of recent thymic emigrants in children and adolescents with type 1 diabetes. Rejuvenation Res 12:311–320

    CAS  PubMed  Google Scholar 

  • Holland AM, van den Brink MR (2009) Rejuvenation of the aging T cell compartment. Curr Opin Immunol 21:454–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holländer GA, Krenger W, Blazar BR (2010) Emerging strategies to boost thymic function. Curr Opin Pharmacol 10:443–453

    PubMed Central  PubMed  Google Scholar 

  • Ichimiya S, Kojima T (2006) Cellular networks of human thymic medullary stromas coordinated by p53-related transcription factors. J Histochem Cytochem 54:1277–1289

    CAS  PubMed  Google Scholar 

  • Inaoka T, Takahashi K, Mineta M, Yamada T, Shuke N, Okizaki A, Nagasawa K, Sugimori H, Aburano T (2007) Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging. Radiology 243:869–876

    PubMed  Google Scholar 

  • Irla M, Guenot J, Sealy G, Reith W, Imhof BA, Sergé A (2013) Three-dimensional visualization of the mouse thymus organization in health and immunodeficiency. J Immunol 190:586–596

    CAS  PubMed  Google Scholar 

  • Ito T, Hoshino T (1996) Light and electron microscopic observations on the vascular pattern of the thymus of the mouse. Arch Histol Jpn 27:351–361

    Google Scholar 

  • Itoi M, Kawamoto H, Katsura Y, Amagai T (2001) Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int Immunol 13:1203–1211

    CAS  PubMed  Google Scholar 

  • Jenkinson WE, Bacon A, White AJ, Anderson G, Jenkinson EJ (2008) An epithelial progenitor pool regulates thymus growth. J Immunol 181:6101–6108

    CAS  PubMed  Google Scholar 

  • Kaitaniemi S, Grön K, Elovaara H, Salmi M, Jalkanen S, Elima K (2013) Functional modulation of vascular adhesion protein-1 by a novel splice variant. PLoS One 8:e54151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang N, Duan L, Tang L, Liu S, Li C, Li Y, Liu Q, Hu Y, Cui L, He W (2008) Identification and characterization of a novel thymus aging related protein Rwdd1. Cell Mol Immunol 5:279–285

    CAS  PubMed  Google Scholar 

  • Kato M, Hara M, Ozawa Y, Shimizu S, Shibamato Y (2012) Computed tomography and magnetic resonance imaging features of posterior mediastinal ganglioneuroma. J Thorac Imaging 27:100–106

    PubMed  Google Scholar 

  • Kato S (1997) Thymic microvascular system. Microsc Res Tech 38:287–299

    CAS  PubMed  Google Scholar 

  • Kato S, Schoefl GI (1987) The vasculature of the guinea-pig thymus: topographic studies by light and electron microscopy. Arch Histol Jpn 50:299–314

    CAS  PubMed  Google Scholar 

  • Kato S, Schoefl GI (1989) Microvasculature of normal and involuted mouse thymus. Light- and electron-microscopic study. Acta Anat (Basel) 135:1–11

    CAS  Google Scholar 

  • Kelley KW, Weigent DA, Kooijman R (2007) Protein hormones and immunity. Brain Behav Immun 21:384–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HG, Kim MJ, Lee MJ (2012) Sonographic appearance of intrathyroid ectopic thymus in children. J Clin Ultrasound 40:266–271

    PubMed  Google Scholar 

  • Kissenpfennig A, Aït-Yahia S, Clair-Moninot V, Stössel H, Badell E, Bordat Y, Pooley JL, Lang T, Prina E, Coste I, Gresser O, Renno T, Winter N, Milon G, Shortman K, Romani N, Lebecque S, Malissen B, Saeland S, Douillard P (2005) Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol Cell Biol 25:88–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kittas C, Parsons MA, Henry L (1979) A light and electron microscope study on the origin of Foà-Kurloff cells. Br J Exp Pathol 60:276–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci U S A 95:11822–11827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koo GC, Peppard JR, Hatzfeld A (1982) Ontogeny of Nk-1+ natural killer cells. I. Promotion of Nk-1+ cells in fetal, baby, and old mice. J Immunol 129:867–871

    CAS  PubMed  Google Scholar 

  • Kotani M, Kawakita M, Fukanogi M, Yamashita A, Seiki K (1967) The passage of thymic lymphocytes to the circulation in the rat. Okajimas Folia Anat Jpn 43:61–71

    CAS  PubMed  Google Scholar 

  • Kuwabara H, Krenacs T, Hirano H, Nishio H, Shikata T, Kizaki T, Nagai M, Suzuki K, Mori H (2002) Immunolocalization of peripheral lymph node addressins in normal and neoplastic human thymuses. Appl Immunohistochem Mol Morphol 10:253–257

    Google Scholar 

  • Kvell K, Varecza Z, Bartis D, Hesse S, Parnell S, Anderson G, Jenkinson EJ, Pongracz JE (2010) Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence. PLoS One 5:e10701

    PubMed Central  PubMed  Google Scholar 

  • Lafontaine M, Landry D, Montplaisir S (1997) Human thymic dendritic cells. Microsc Res Tech 38:267–275

    CAS  PubMed  Google Scholar 

  • Law LW, Dunn TB, Trainin N, Levey RH (1964) Studies of thymic function. Wistar Inst Symp Monogr 2:105–120

    CAS  PubMed  Google Scholar 

  • Laws AM, Osborne BA (2004) p53 regulates thymic Notch1 activation. Eur J Immunol 34(3):726–734

    CAS  PubMed  Google Scholar 

  • Lee CK, Kim JK, Kim Y, Lee MK, Kim K, Kang JK, Hofmeister R, Durum SK, Han SS (2001) Generation of macrophages from early T progenitors in vitro. J Immunol 166:5964–5969

    CAS  PubMed  Google Scholar 

  • Lepique AP, Palencia S, Irjala H, Petrie HT (2003) Characterization of vascular adhesion molecules that may facilitate progenitor homing in the post-natal mouse thymus. Clin Dev Immunol 10:27–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19:514–520

    CAS  PubMed  Google Scholar 

  • Liu D, Kitajima M, Awai K, Nakayama Y, Tamura Y, Suda H, Asonuma K, Inomata Y, Yamashita Y (2006) Ectopic cervical thymus in an infant. Radiat Med 24:452–455

    PubMed  Google Scholar 

  • Liu LT, Lang ZF, Li Y, Zhu YJ, Zhang JT, Guo SF, Wang JX, Wang HW, Xu YD (2013) Composition and characteristics of distinct macrophage subpopulations in themou se thymus. Mol Med Rep 7:1850–1854

    CAS  PubMed  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30:366–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madden KS, Thyagarajan S, Felten DL (1998) Alterations in sympathetic noradrenergic innervation in lymphoid organs with age. Ann N Y Acad Sci 840:262–268

    CAS  PubMed  Google Scholar 

  • Manley NR, Richie ER, Blackburn CC, Condie BG, Sage J (2011) Structure and function of the thymic microenvironment. Front Biosci 16:2461–2477

    CAS  Google Scholar 

  • Marinova TT, Spassov LD, Vlassov VI, Pashev VV, Markova MD, Ganev VS, Dzhupanova RS, Angelov DN (2009) Aged human thymus hassall's corpuscles are immunoreactive for IGF-I and IGF-I receptor. Anat Rec (Hoboken) 292:960–965

    Google Scholar 

  • Marinova T, Velikova K, Philipov S, Stankulov I, Chaldakov G, Aloe L (2003) Cellular localization of NGF and NGF receptors in aged human thymus. Folia Biol (Praha) 49:160–164.

    Google Scholar 

  • Matarese G, Moschos S, Mantzoros CS (2005) Leptin in immunology. J Immunol 174:3137–3142

    CAS  PubMed  Google Scholar 

  • Meilin A, Shoham J, Schreiber L, Sharabi Y (1995) The role of thymocytes in regulating thymic epithelial cell growth and function. Scand J Immunol 42:185–190

    CAS  PubMed  Google Scholar 

  • Mello Coelho V, Bunbury A, Rangel LB, Giri B, Weeraratna A, Morin PJ, Bernier M, Taub DD (2009) Fat-storing multilocular cells expressing CCR5 increase in the thymus with advancing age: potential role for CCR5 ligands on the differentiation and migration of preadipocytes. Int J Med Sci 7:1–14

    PubMed Central  PubMed  Google Scholar 

  • Mignini F, Streccioni V, Amenta F (2003) Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol 23:1–25

    CAS  PubMed  Google Scholar 

  • Milićević NM, Milićević Z (2004) Thymus cell-cell interactions. Int Rev Cytol 235:1–52

    PubMed  Google Scholar 

  • Milićević NM, Milićević Z, Colic M, Mujović S (1987) Ultrastructural study of macrophages in the rat thymus, with special reference to the cortico-medullary zone. J Anat 150:89–98

    PubMed  Google Scholar 

  • Milićević NM, Milićević Z, Piletić O, Mujović S, Ninkov V (1983) Reactivity of thymic metallophilic cells during the regeneration after the application of cyclophosphamide. J Reticuloendothel Soc 34:501–507

    PubMed  Google Scholar 

  • Milićević NM, Milićević ZJ (1984) Enzyme-histochemical characterization of macrophages in the rat thymus, with special reference to metallophilic cells of the corticomedullary zone. J Leukoc Biol 36:761–769

    PubMed  Google Scholar 

  • Miller JF (2002) The discovery of thymus function and of thymus-derived lymphocytes. Immunol Rev 185:7–14

    CAS  PubMed  Google Scholar 

  • Miller RA, Harper JM, Galecki A, Burke DT (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1:22–29

    CAS  PubMed  Google Scholar 

  • Miller JFAP, Marshall AHE, White RG (1962) The immunological significance of the thymus. Adv Immunol 2:111–162

    CAS  Google Scholar 

  • Min D, Panoskaltsis-Mortari A, Kuro-O M, Holländer GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109:2529–2537

    CAS  PubMed  Google Scholar 

  • Min H, Montecino-Rodriguez E, Dorshkind K (2006) Reassessing the role of growth hormone and sex steroids in thymic involution. Clin Immunol 118:117–123

    CAS  PubMed  Google Scholar 

  • Mitchell B, Kendall M, Adam E, Schumacher U (1997) Innervation of the thymus in normal and bone marrow reconstituted severe combined immunodeficient (SCID) mice. J Neuroimmunol 75:19–27

    CAS  PubMed  Google Scholar 

  • Mitchell WA, Lang PO, Aspinall R (2010) Tracing thymic output in older individuals. Clin Exp Immunol 161:497–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizia-Malarz A, Sobol G, Maldyk J, Stolpa W, Szyszka A, Wos H (2009) Cervical ectopic thymus in a 9-month-old girl: diagnostic difficulties. J Pediatr Hematol Oncol 31:599–601

    PubMed  Google Scholar 

  • Mocchegiani E, Santarelli L, Costarelli L, Cipriano C, Muti E, Giacconi R, Malavolta M (2006) Plasticity of neuroendocrine-thymus interactions during ontogeny and ageing: role of zinc and arginine. Ageing Res Rev 5:281–309

    CAS  PubMed  Google Scholar 

  • Mori K, Itoi M, Tsukamoto N, Amagai T (2010) Foxn1 is essential for vascularization of the murine thymus anlage. Cell Immunol 260:66–69

    CAS  PubMed  Google Scholar 

  • Mori K, Itoi M, Tsukamoto N, Kubo H, Amagai T (2007) The perivascular space as a path of hematopoietic progenitor cells and mature T cells between the blood circulation and the thymic parenchyma. Int Immunol 19:745–753

    CAS  PubMed  Google Scholar 

  • Morley JE (2003) Hormones and the aging process. J Am Geriatr Soc 51:S333–S337

    PubMed  Google Scholar 

  • Morrhaye G, Kermani H, Legros JJ, Baron F, Beguin Y, Moutschen M, Cheynier R, Martens HJ, Geenen V (2009) Impact of growth hormone (GH) deficiency and GH replacement upon thymus function in adult patients. PLoS One 22:e5668

    Google Scholar 

  • Müller SM, Stolt CC, Terszowski G, Blum C, Amagai T, Kessaris N, Iannarelli P, Richardson WD, Wegner M, Rodewald HR (2008) Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol 180:5344–5351

    PubMed  Google Scholar 

  • Nabarra B, Andrianarison I (1996) Ultrastructural study of thymic microenvironment involution in aging mice. Exp Gerontol 31:489–506

    CAS  PubMed  Google Scholar 

  • Naquet P, Naspetti M, Boyd R (1999) Development, organization and function of the thymic medulla in normal, immunodeficient or autoimmune mice. Semin Immunol 11:47–55

    CAS  PubMed  Google Scholar 

  • Nasseri F, Eftekhari F (2010) Clinical and radiologic review of the normal and abnormal thymus: pearls and pitfalls. Radiographics 30:413–428

    PubMed  Google Scholar 

  • Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107

    CAS  PubMed  Google Scholar 

  • Neumann CG, Gewa C, Bwibo NO (2004) Child nutrition in developing countries. Pediatr Ann 33:658–674

    PubMed  Google Scholar 

  • Niijima A (1995) An electrophysiological study on the vagal innervation of the thymus in the rat. Brain Res Bull 38:319–323

    CAS  PubMed  Google Scholar 

  • Olsen NJ, Viselli SM, Fan J, Kovacs WJ (1998) Androgens accelerate thymocyte apoptosis. Endocrinology 139:748–752

    CAS  PubMed  Google Scholar 

  • Opiela SJ, Koru-Sengul T, Adkins B (2009) Murine neonatal recent thymic emigrants are phenotypically and functionally distinct from adult recent thymic emigrants. Blood 113:5635–5643

    CAS  PubMed  Google Scholar 

  • Ortega E, Garcia JJ, De La Fuente M (2000) Ageing modulates some aspects of the non-specific immune response of murine macrophages and lymphocytes. Exp Physiol 85:519–525

    CAS  PubMed  Google Scholar 

  • Ortman CL, Dittmar KA, Witte PL, Le PT (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14:813–822

    CAS  PubMed  Google Scholar 

  • Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, Zuklys S et al (2012) The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via suppression of the IFN-α receptor mediated by microRNA-29 a. Nat Immunol 13:181–187

    CAS  Google Scholar 

  • Petrie HT (2002) Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol Rev 189:8–19

    CAS  PubMed  Google Scholar 

  • Pereira G, Clermont Y (1971) Distribution of cell web-containing epithelial reticular cells in the rat thymus. Anat Rec 169:613–626

    CAS  PubMed  Google Scholar 

  • Pond CM (2000) Adipose tissue: quartermaster to the lymph node garrisons. Biologist 47:147–150

    CAS  PubMed  Google Scholar 

  • Prasad TR, Chui CH, Ong CL, Meenakshi A (2006) Cervical ectopic thymus in an infant. Singap Med J 47:68–70

    CAS  Google Scholar 

  • Qiao S, Chen L, Okret S, Jondal M (2008) Age-related synthesis of glucocorticoids in thymocytes. Exp Cell Res 314:3027–3035

    CAS  PubMed  Google Scholar 

  • Ranlov P, Christensen HE, Wanstrup J (1970) Effects of thymectomy upon the formation of Fóa-Kurloff cells in the guinea pig. Acta Pathol Microbiol Scand B Microbiol Immunol 78:330–332

    CAS  PubMed  Google Scholar 

  • Raviola E, Karnovsky MJ (1972) Evidence for a blood-thymus barrier using electron-opaque tracers. J Exp Med 136:466–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C (2001) Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 167:1954–1961

    CAS  PubMed  Google Scholar 

  • Rezzani R, Bonomini F, Rodella LF (2008) Histochemical and molecular overview of the thymus as site for T-cells development. Prog Histochem Cytochem 43:73–120

    CAS  PubMed  Google Scholar 

  • Rezzani R, Rodella L, Zauli G, Caimi L, Vitale M (1999) Mouse peritoneal cells as a reservoir of late dendritic cell progenitors. Br J Haematol 104:111–118

    CAS  PubMed  Google Scholar 

  • Rode I, Boehm T (2012) Regenerative capacity of adult cortical thymic epithelial cells. Proc Natl Acad Sci U S A 109:3463–3468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodewald HR (2008) Thymus organogenesis. Annu Rev Immunol 26:355–388

    CAS  PubMed  Google Scholar 

  • Rodewald HR, Paul S, Haller C, Bluethmann H, Blum C (2001) Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414:763–768

    CAS  PubMed  Google Scholar 

  • Rose MR, Flatt T, Graves JL, Greer LF, Martinez DE, Matos M, Mueller LD, Shmookler Reis RJ, Shahrestani P (2012) What is Aging? Front Genet 3:134

    PubMed Central  PubMed  Google Scholar 

  • Safadi FF, Dissanayake IR, Goodman GG, Jago RA, Baker AE, Bowman AR, Sass DA, Popoff SN, Epstein S (2000) Influence of estrogen deficiency and replacement on T-cell populations in rat lymphoid tissues and organs. Endocrine 2:81–88

    Google Scholar 

  • Safieddine N, Keshavjee S (2011) Anatomy of the thymus gland. Thorac Surg Clin 21:191–195

    PubMed  Google Scholar 

  • Saggese D, Ceroni Compadretti G, Cartaroni C (2002) Cervical ectopic thymus: a case report and review of the literature. Int J Pediatr Otorhinolaryngol 66:77–80

    PubMed  Google Scholar 

  • Sakai S, Murayama S, Soeda H, Matsuo Y, Ono M, Masuda K (2002) Differential diagnosis between thymoma and non-thymoma by dynamic MR imaging. Acta Radiol 43:262–268

    CAS  PubMed  Google Scholar 

  • Salas J, Montiel M, Jiménez E, Valenzuela M, Valderrama JF, Castillo R, González S, El Bekay R (2009) Angiogenic properties of adult human thymus fat. Cell Tissue Res 338:313–318

    Google Scholar 

  • Samms M, Martinez M, Fousse S, Pezzano M, Guyden JC (2001) Circulating macrophages as well as developing thymocytes are enclosed within thymic nurse cells. Cell Immunol 212:16–23

    CAS  PubMed  Google Scholar 

  • Savchenko AS, Hasegawa G, Naito M (2006) Development and maturation of thymic dendritic cells during human ontogeny. Cell Tissue Res 325:455–460

    PubMed  Google Scholar 

  • Savino W (2002) The thymus gland is a target in malnutrition. Eur J Clin Nutr 56:S46–S49

    CAS  PubMed  Google Scholar 

  • Savino W, Boitard C, Bach JF, Dardenne M (1991) Studies on the thymus in nonobese diabetic mouse. I. Changes in the microenvironmental compartments. Lab Invest 64:405–417

    CAS  PubMed  Google Scholar 

  • Savino W, de Mello-Coelho V, Dardenne M (1995) Control of the thymic microenvironment by growth hormone/insulin-like growth factor-I-mediated circuits. Neuroimmunomodulation 2:313–318

    CAS  PubMed  Google Scholar 

  • Schluep M, Willcox N, Ritter MA, Newsom-Davis J, Larché M, Brown AN (1988) Myasthenia gravis thymus: clinical, histological and culture correlations. J Autoimmun 1:445–467

    CAS  PubMed  Google Scholar 

  • Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164:2180–2187

    CAS  PubMed  Google Scholar 

  • Shanley DP, Aw D, Manley NR, Palmer DB (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30:374–381

    CAS  PubMed  Google Scholar 

  • Shortman K, Caux C (1997) Dendritic cell development: multiple pathways to nature's adjuvants. Stem Cells 15:409–419

    CAS  PubMed  Google Scholar 

  • Sminia T, van Asselt AA, van de Ende MB, Dijkstra CD (1986) Rat thymus macrophages: an immunohistochemical study on fetal, neonatal and adult thymus. Thymus 8:141–150

    CAS  PubMed  Google Scholar 

  • Stämpfli SF, Akhmedov A, Gebhard C, Lohmann C, Holy EW, Rozenberg I, Spescha R, Shi Y, Lüscher TF, Tanner FC, Camici GG (2010) Aging induces endothelial dysfunction while sparing arterial thrombosis. Arterioscler Thromb Vasc Biol 30:1960–1967

    PubMed  Google Scholar 

  • Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA, Chidgey AP, Boyd RL (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753

    CAS  PubMed  Google Scholar 

  • Takahashi K, Al-Janabi NJ (2010) Computed tomography and magnetic resonance imaging of mediastinal tumors. J Magn Reson Imaging 32:1325–1339

    PubMed  Google Scholar 

  • Takeoka Y, Chen SY, Yago H, Boyd R, Suehiro S, Shultz LD, Ansari AA, Gershwin ME (1996) The murine thymic microenvironment: changes with age. Int Arch Allergy Immunol 111:5–12

    CAS  PubMed  Google Scholar 

  • Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93

    CAS  PubMed  Google Scholar 

  • Taub DD, Murphy WJ, Longo DL (2010) Rejuvenation of the aging thymus: Growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol 10:408–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    CAS  PubMed  Google Scholar 

  • Tinahones F, Salas J, Mayas MD, Ruiz-Villalba A, Macias-Gonzalez M, Garrido-Sanchez L, DeMora M, Moreno-Santos I, Bernal R, Cardona F, El Bekay R (2009) VEGF gene expression in adult human thymus fat: a correlative study with hypoxic induced factor and cyclooxygenase-2. PLoS One 4:e8213

    PubMed Central  PubMed  Google Scholar 

  • Tollefson L, Bulloch K (1990) Dual-label retrograde transport: CNS innervation of the mouse thymus distinct from other mediastinum viscera. J Neurosci Res 25:20–28

    CAS  PubMed  Google Scholar 

  • Torroba M, Zapata AG (2003) Aging of the vertebrate immune system. Microsc Res Tech 62:477–481

    PubMed  Google Scholar 

  • Trotter-Mayo RN, Roberts MR (2008) Leptin acts in the periphery to protect thymocytes from glucocorticoid-mediated apoptosis in the absence of weight loss. Endocrinology 149:5209–5218

    CAS  PubMed  Google Scholar 

  • Trottier MD, Naaz A, Li Y, Fraker PJ (2012) Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc Natl Acad Sci U S A 109:7622–7629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uddin MN, Nishio N, Ito S, Suzuki H, Isobe K (2012) Autophagic activity in thymus and liver during aging. Age (Dordr) 34:75–85

    Google Scholar 

  • Ushiki T (1986) A scanning electron-microscopic study of the rat thymus with special reference to cell types and migration of lymphocytes into the general circulation. Cell Tissue Res 244:285–298

    Google Scholar 

  • Utsuyama M, Hirokawa K (1989) Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy. Mech Ageing Dev 47:175–185

    CAS  PubMed  Google Scholar 

  • Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81

    CAS  PubMed  Google Scholar 

  • Van Haelst UJ (1969) Light and electron microscopic study of the normal and pathological thymus of the rat. 3. A mesenchymal histiocytic type of cell. Z Zellforsch Mikrosk Anat 99:198–209

    PubMed  Google Scholar 

  • Varas A, Sacedón R, Hernandez-López C, Jiménez E, García-Ceca J, Arias-Díaz J, Zapata AG, Vicente A (2003) Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech 62:501–507

    CAS  PubMed  Google Scholar 

  • Vicente A, Varas A, Sacedón R, Zapata AG (1996) Histogenesis of the epithelial component of rat thymus: an ultrastructural and immunohistological analysis. Anat Rec 244:506–519

    CAS  PubMed  Google Scholar 

  • Virts EL, Thoman ML (2010) Age-associated changes in miRNA expression profiles in thymopoiesis. Mech Ageing Dev 131:743–748

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Gaudecker B (1997) Progressive widening of the mesodermal perivascular space in human thymus. Verh Anat Ges 71:783–787, Pt 1

    Google Scholar 

  • von Gaudecker B, Kendall MD, Ritter MA (1997) Immuno-electron microscopy of the thymic epithelial microenvironment. Microsc Res Tech 38:237–249

    Google Scholar 

  • Vremec D, Pooley J, Hochrein H, Wu L, Shortman K (2000) CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164:2978–2986

    CAS  PubMed  Google Scholar 

  • Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF, Wu L, Shortman K (1992) The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 176:47–58

    CAS  PubMed  Google Scholar 

  • Wakimoto T, Tomisaka R, Nishikawa Y, Sato H, Yoshino T, Takahashi K (2008) Identification and characterization of human thymic cortical dendritic macrophages that may act as professional scavengers of apoptotic thymocytes. Immunobiology 213:837–847

    CAS  PubMed  Google Scholar 

  • Wang J, Fu H, Yang H, Wang L, He Y (2011) Clinical management of cervical ectopic thymus in children. J Pediatr Surg 46:e33–e36

    PubMed  Google Scholar 

  • Wu AJ, Hua H, Munson SH, McDevitt HO (2002) Tumor necrosis factor-alpha regulation of CD4 + CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U S A 99:12287–12292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu L, Shortman K (2005) Heterogeneity of thymic dendritic cells. Semin Immunol 17:304–312

    CAS  PubMed  Google Scholar 

  • Wu L, Vremec D, Ardavin C, Winkel K, Süss G, Georgiou H, Maraskovsky E, Cook W, Shortman K (1995) Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation. Eur J Immunol 25:418–425

    CAS  PubMed  Google Scholar 

  • Xaus J, Comalada M, Barrachina M, Herrero C, Goñalons E, Soler C, Lloberas J, Celada A (2000) The expression of MHC class II genes in macrophages is cell cycle dependent. J Immunol 165:6364–6371

    CAS  PubMed  Google Scholar 

  • Xing L, Guo J, Tang J, Tang Y, Wang X (1998) Morphological evidence for the location of calcitonin gene-related peptide (CGRP) immunoreactivity in rat lymphocytes. Cell Vis 5:8–12

    CAS  PubMed  Google Scholar 

  • Yagi H, Nakamura M, Ishii T, Kasahara S, Itoh T (1997) Ultrastructural analysis of mouse thymocyte subpopulations. Eur J Immunol 27:2680–2687

    CAS  PubMed  Google Scholar 

  • Yamasaki M (1989) Studies on the thyroid and thymic arteries of Japanese adults and fetuses. Anat Anz 169:213–221

    CAS  PubMed  Google Scholar 

  • Yan SX, Wei W (2011) Castration reverses immunosenescence in aged mice. Acta Pharmacol Sin 32:1085–1086

    CAS  PubMed  Google Scholar 

  • Yang H, Youm YH, Dixit VD (2009a) Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 183:3040–3052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Youm YH, Sun Y, Rim JS, Galbán CJ, Vandanmagsar B, Dixit VD (2009b) Axin expression in thymic stromal cells contributes to an age-related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling. J Leukoc Biol 85:928–938

    CAS  PubMed  Google Scholar 

  • Yang H, Youm YH, Vandanmagsar B, Rood J, Kumar KG, Butler AA, Dixit VD (2009c) Obesity accelerates thymic aging. Blood 114:3803–3812

    CAS  PubMed  Google Scholar 

  • Youm YH, Yang H, Amin R, Smith SR, Leff T, Dixit VD (2010) Thiazolidinedione treatment and constitutive-PPARgamma activation induces ectopic adipogenesis and promotes age-related thymic involution. Aging Cell 9:478–489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeira M, Gallily R (1990) Effect of strain and age on in vitro proliferation of murine thymus-derived macrophages. Thymus 15:1–13

    CAS  PubMed  Google Scholar 

  • Zhang ZL, Constantinou D, Mandel TE, Georgiou HM (1994) Lymphocyte subsets in thymus and peripheral lymphoid tissues of aging and diabetic NOD mice. Autoimmunity 17:41–48

    CAS  PubMed  Google Scholar 

  • Zhao H, Tian Z, Hao J, Chen B (2005) Extragonadal aromatization increases with time after ovariectomy in rats. Reprod Biol Endocrinol 3:6

    PubMed Central  PubMed  Google Scholar 

  • Zieliński M, Kuzdzal J, Szlubowski A, Soja J (2004) Comparison of late results of basic transsternal and extended transsternal thymectomies in the treatment of myasthenia gravis. Ann Thorac Surg 78:253–258

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank CHRONOLIFE S.r.l. for the support of this study and Miss Castrezzati Stefania for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rezzani.

About this article

Cite this article

Rezzani, R., Nardo, L., Favero, G. et al. Thymus and aging: morphological, radiological, and functional overview. AGE 36, 313–351 (2014). https://doi.org/10.1007/s11357-013-9564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9564-5

Keywords

Navigation