Skip to main content

Advertisement

Log in

Effects of Sirt1 on DNA methylation and expression of genes affected by dietary restriction

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Changes in DNA methylation across the life course may contribute to the ageing process. We hypothesised that some effects of dietary restriction to extend lifespan and/or mitigate against features of ageing result from changes in DNA methylation, so we determined if genes that respond to dietary restriction also show age-related changes in DNA methylation. In support of our hypothesis, the intersection of lists of genes compiled from published sources that (1) were differentially expressed in response to dietary restriction and (2) showed altered methylation with increased age was greater than expected. We also hypothesised that some effects of Sirt1, which may play a pivotal role in beneficial effects of dietary restriction, are mediated through DNA methylation. We thus measured effects of Sirt1 overexpression and knockdown in a human cell line on DNA methylation and expression of a panel of eight genes that respond to dietary restriction and show altered methylation with age. Six genes were affected at the level of DNA methylation, and for six expressions were affected. In further support of our hypothesis, we observed by DNA microarray analysis that genes showing differential expression in response to Sirt1 knockdown were over-represented in the complied list of genes that respond to dietary restriction. The findings reveal that Sirt1 has effects on DNA methylation across the genome and affects, in particular, the expression of genes that respond to dietary restriction. Sirt1-mediated effects on DNA methylation and, consequently, gene expression may thus be one of the mechanisms underlying the response to dietary restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allard JS, Heilbronn LK, Smith C, Hunt ND, Ingram DK, Ravussin E, de Cabo R (2008) In vitro cellular adaptations of indicators of longevity in response to treatment with serum collected from humans on calorie restricted diets. PLoS One 3(9):e3211. doi:10.1371/journal.pone.0003211

    Article  PubMed  Google Scholar 

  • Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8(4):333–341. doi:10.1016/j.cmet.2008.08.014

    Article  PubMed  CAS  Google Scholar 

  • Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekstrom TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP (2008) Intra-individual change over time in DNA methylation with familial clustering. Jama 299(24):2877–2883

    Article  PubMed  CAS  Google Scholar 

  • Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4(2):e31

    Article  PubMed  Google Scholar 

  • Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging cell 6(6):759–767

    Article  PubMed  CAS  Google Scholar 

  • Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Perusse L, Vohl MC (2010) Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr 91(2):309–320. doi:10.3945/ajcn.2009.28085

    Article  PubMed  CAS  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365):482–485. doi:10.1038/nature10296

    Article  PubMed  CAS  Google Scholar 

  • Canto C, Auwerx J (2011) Calorie restriction: is AMPK a key sensor and effector? Physiol, Bethesda MD 26(4):214–224. doi:10.1152/physiol.00010.2011

    Article  CAS  Google Scholar 

  • Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602. doi:10.1371/journal.pgen.1000602

    Article  PubMed  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4(3):e76

    Article  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    Article  PubMed  CAS  Google Scholar 

  • Coneyworth LJ, Davison G, Blackwell C, Mathers JC, Valentine RA, Ford D (2009) Differential methylation of the SLC30A5 zinc transporter gene in cancerous compared with normal human colon epithelium. Proc Physiol Soc 16:C14

    Google Scholar 

  • Conti V, Corbi G, Russomanno G, Simeon V, Ferrara N, Filippelli W, Limongelli F, Canonico R, Grasso C, Stiuso P, Dicitore A, Filippelli A (2012) Oxidative stress effects on endothelial cells treated with different athletes’ sera. Med Sci Sports Exercise 44(1):39–49. doi:10.1249/MSS.0b013e318227f69c

    Article  Google Scholar 

  • Corbi G, Conti V, Scapagnini G, Filippelli A, Ferrara N (2012) Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci (Elite Ed) 4:768–778

    Google Scholar 

  • Cragg RA, Christie GR, Phillips SR, Russi RM, Kury S, Mathers JC, Taylor PM, Ford D (2002) A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem 277(25):22789–22797

    Article  PubMed  CAS  Google Scholar 

  • Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR (2006) Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol 61(3):218–231

    Article  Google Scholar 

  • Dong Y, Guo T, Traurig M, Mason CC, Kobes S, Perez J, Knowler WC, Bogardus C, Hanson RL, Baier LJ (2011) SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab 104(4):661–665. doi:10.1016/j.ymgme.2011.08.001

    Article  PubMed  CAS  Google Scholar 

  • Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging cell 9(2):285–290. doi:10.1111/j.1474-9726.2010.00548.x

    Article  PubMed  CAS  Google Scholar 

  • Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320–332. doi:10.1016/j.cell.2010.06.020

    Article  PubMed  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11(1):139–150. doi:10.1089/rej.2007.0576

    Article  PubMed  CAS  Google Scholar 

  • Ford D, Ions LJ, Alatawi F, Wakeling LA (2011) The potential role of epigenetic responses to diet in ageing. Proc Nutr Soc 70:374–384

    Article  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    Article  PubMed  CAS  Google Scholar 

  • Fu C, Hickey M, Morrison M, McCarter R, Han ES (2006) Tissue specific and non-specific changes in gene expression by aging and by early stage CR. Mech Ageing Dev 127(12):905–916. doi:10.1016/j.mad.2006.09.006

    Article  PubMed  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol 8(4):416–424

    Article  PubMed  CAS  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120(4):473–482

    Article  PubMed  CAS  Google Scholar 

  • Han ES, Hickey M (2005) Microarray evaluation of dietary restriction. J Nutr 135(6):1343–1346

    PubMed  CAS  Google Scholar 

  • Hass BS, Hart RW, Lu MH, Lyn-Cook BD (1993) Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res 295(4–6):281–289

    PubMed  CAS  Google Scholar 

  • Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109(26):10522–10527. doi:10.1073/pnas.1120658109

    Article  PubMed  CAS  Google Scholar 

  • Higami Y, Pugh TD, Page GP, Allison DB, Prolla TA, Weindruch R (2004) Adipose tissue energy metabolism: altered gene expression profile of mice subjected to long-term caloric restriction. FASEB J 18(2):415–417

    PubMed  CAS  Google Scholar 

  • Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7(4):536–540

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Helston RM, McKay JA, O’Neill ED, Mathers JC, Ford D (2007) Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localised and regulated by zinc through transcription and mRNA stability. J Biol Chem 282:10423–10431

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB (2008) A systematic look at an old problem. Nature 451(7179):644–647. doi:10.1038/451644a

    Article  PubMed  CAS  Google Scholar 

  • Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany, NY) 3(10):1018–1027

    CAS  Google Scholar 

  • Koch CM, Suschek CV, Lin Q, Bork S, Goergens M, Joussen S, Pallua N, Ho AD, Zenke M, Wagner W (2011) Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS One 6(2):e16679. doi:10.1371/journal.pone.0016679

    Article  PubMed  CAS  Google Scholar 

  • Kwabi-Addo B, Chung W, Shen L, Ittmann M, Wheeler T, Jelinek J, Issa JP (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13(13):3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA (2002) Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci U S A 99(23):14988–14993. doi:10.1073/pnas.232308999232308999[pii]

    Article  PubMed  CAS  Google Scholar 

  • Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging cell 9(1):92–95. doi:10.1111/j.1474-9726.2009.00533.x

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895):344–348

    Article  PubMed  CAS  Google Scholar 

  • Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. doi:10.1101/gr.096826.109

  • Massaro D, Massaro GD, Baras A, Hoffman EP, Clerch LB (2004) Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression. Am J Physiol Lung Cell Mol Physiol 286(5):L896–L906. doi:10.1152/ajplung.00333.200300333.2003

    Article  PubMed  CAS  Google Scholar 

  • Mathers JC, Ford D (2009) Nutrition, epigenetics and aging. In: Choi SW, Friso S (eds) Nutrients and epigenetics. CRC Press (Taylor and Francis Group), pp 175-205

  • McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279(43):44533–44543. doi:10.1074/jbc.M406207200M406207200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I, Zulet MA, Martinez JA (2011) A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J 25(4):1378–1389. doi:10.1096/fj.10-170365

    Article  PubMed  CAS  Google Scholar 

  • Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R (2010) Dietary interventions to extend life span and health span based on calorie restriction. J Geront 65(7):695–703. doi:10.1093/gerona/glq042

    Google Scholar 

  • Miyamura Y, Tawa R, Koizumi A, Uehara Y, Kurishita A, Sakurai H, Kamiyama S, Ono T (1993) Effects of energy restriction on age-associated changes of DNA methylation in mouse liver. Mutat Res 295(2):63–69

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135(5):907–918

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439. doi:10.1101/gr.103101.109

    Article  PubMed  CAS  Google Scholar 

  • Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2(3):245–261

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003

    Article  PubMed  CAS  Google Scholar 

  • Rutanen J, Yaluri N, Modi S, Pihlajamaki J, Vanttinen M, Itkonen P, Kainulainen S, Yamamoto H, Lagouge M, Sinclair DA, Elliott P, Westphal C, Auwerx J, Laakso M (2010) SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 59(4):829–835. doi:10.2337/db09-1191

    Article  PubMed  CAS  Google Scholar 

  • Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, Barton RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM, Partridge L, Withers DJ (2006) Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol Genomics 27(3):187–200. doi:10.1152/physiolgenomics.00084.2006

    Article  PubMed  CAS  Google Scholar 

  • Sharov AA, Falco G, Piao Y, Poosala S, Becker KG, Zonderman AB, Longo DL, Schlessinger D, Ko M (2008) Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol 6:24. doi:10.1186/1741-7007-6-24

    Article  PubMed  Google Scholar 

  • Swindell WR (2008) Comparative analysis of microarray data identifies common responses to caloric restriction among mouse tissues. Mech Ageing Dev 129(3):138–153. doi:10.1016/j.mad.2007.11.003

    Article  PubMed  CAS  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440–446. doi:10.1101/gr.103606.109

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T, Dhahbi JM, Cui X, Mote PL, Bartke A, Spindler SR (2004) Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiol Genomics 17(3):307–315. doi:10.1152/physiolgenomics.00039.200400039.2004[pii]

    Article  PubMed  CAS  Google Scholar 

  • Wakeling LA, Ions LJ, Ford D (2009) Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions? Age (Dordr) 31:327–341. doi:10.1007/s11357-009-9104-5

    Article  CAS  Google Scholar 

  • Wang Y, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20(7):1170–1177. doi:10.1093/bioinformatics/bth059

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Shen Q, Dong S, Xu Z, Tsien JZ, Hu Y (2008) Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging 29(10):1502–1511. doi:10.1016/j.neurobiolaging.2007.03.028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the BBSRC (studentship to LJI and research grant nos. BBE0074571 and BBF0196371), Strategic Promotion of Ageing Research Capacity (SPARC), MRC (studentships to HJB and JEJH) and the Rank Prize Funds (studentship to SME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne Ford.

Additional information

Laura J Ions and Luisa A Wakeling are both joint first authors, based on equal contribution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Primers and annealing temperatures used for RT-qPCR. Sequences are in the 5′–3′ direction, and subscript numerals refer to positions within the sequences deposited under the stated GenBank accession numbers (DOC 38 kb)

ESM 2

Primers and annealing temperatures used for pyrosequencing. PCR products were generated using HotStarTaq Master Mix (Qiagen) from bisulphite-converted DNA using primers (0.25 μM each) and annealing temperatures as listed, including a 5′ biotin label on the sense primer of the nested reaction (antisense for KLF3), as indicated, and the following cycling parameters: 95 °C, 15 min then 95 °C, 15 s; 40–58 °C (annealing), 60 s; 72 °C 60 s—35 cycles for the first-round PCR and 50 cycles for the nested reaction—followed by 72 °C for 5 min. Primers sequences are in the 5′ to 3′ direction, and subscript numbers indicate position relative to the transcription start site (DOC 43 kb)

ESM 3

Complied lists of genes used for the in silico analysis (XLS 1053 kb)

ESM 4

DNA microarray data for effects of Sirt1 knockdown in Caco-2 cells by two different siRNAs (XLS 181 kb)

ESM 5

Comparative effects on TBX3 DNA methylation at the three CpG sites in the region −135 to +1, relative to the start of transcription, of increasing (transgene overexpression) or reducing (siRNA) expression of Sirt1 in Caco-2 cells and HuVECs. Values for the control condition were derived through combining the data for controls for Sirt1 overexpression (plasmid minus Sirt1 transgene insert) and knockdown (control siRNA), which did not differ. Data are stated to the nearest 0.25 %, based on calculation of medians and quartiles from values rounded to the nearest 1 %. Q1 first quartile, Q3 third quartile. **P < 0.01, compared with control; #P < 0.05; ##P < 0.01, compared with SIRT1 overexpression, by Kruskal Wallis followed by Dunn’s multiple comparisons tests (DOC 33 kb)

ESM 6

Comparative effects on relative TBX3 mRNA levels of increasing (transgene overexpression) or reducing (siRNA) expression of Sirt1 in Caco-2 cells and HuVECs. Values for the control condition were derived through combining the data for controls for Sirt1 overexpression (plasmid minus Sirt1 transgene insert) and knockdown (control siRNA), which did not differ. Data are expressed relative to the mean for two reference genes—GAPDH and WNT11—for Caco-2 cells and relative to GAPDH for HuVECs and are normalised to the control condition. *P < 0.05 compared with control by one-way ANOVA followed by Tukey’s post test (DOC 30 kb)

About this article

Cite this article

Ions, L.J., Wakeling, L.A., Bosomworth, H.J. et al. Effects of Sirt1 on DNA methylation and expression of genes affected by dietary restriction. AGE 35, 1835–1849 (2013). https://doi.org/10.1007/s11357-012-9485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9485-8

Keywords

Navigation