Skip to main content
Log in

Determinants of Standard Errors of MLEs in Confirmatory Factor Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper studies changes of standard errors (SE) of the normal-distribution-based maximum likelihood estimates (MLE) for confirmatory factor models as model parameters vary. Using logical analysis, simplified formulas and numerical verification, monotonic relationships between SEs and factor loadings as well as unique variances are found. Conditions under which monotonic relationships do not exist are also identified. Such functional relationships allow researchers to better understand the problem when significant factor loading estimates are expected but not obtained, and vice versa. What will affect the likelihood for Heywood cases (negative unique variance estimates) is also explicit through these relationships. Empirical findings in the literature are discussed using the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M.J., & Yen, W.M. (1979). Introduction to measurement theory. Monterey: Brooks-Cole.

    Google Scholar 

  • Anderson, T.W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Annals of Statistics, 16, 759–771.

    Article  Google Scholar 

  • Anderson, J.C., & Gerbing, D.W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173.

    Article  Google Scholar 

  • Bentler, P.M. (1983). Some contributions to efficient statistics for structural models: Specification and estimation of moment structures. Psychometrika, 48, 493–517.

    Article  Google Scholar 

  • Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

    Article  PubMed  Google Scholar 

  • Boomsma, A. (1982). The robustness of LISREL against small sample sizes in factor analysis models. In K.G. Jöreskog, & H. Wold (Eds.), Systems under indirect observation: causality, structure, prediction (pp. 149–173). Amsterdam: North-Holland (Part I).

    Google Scholar 

  • Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation. Psychometrika, 50, 229–242.

    Article  Google Scholar 

  • Browne, M.W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    PubMed  Google Scholar 

  • Cudeck, R., & O’Dell, L.L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475–487.

    Article  PubMed  Google Scholar 

  • Gerbing, D.W., & Anderson, J.C. (1987). Improper solutions in the analysis of covariance structures: Their interpretability and a comparison of alternate respecifications. Psychometrika, 52, 99–111.

    Article  Google Scholar 

  • Holzinger, K.J., & Swineford, F. (1939). University of Chicago: supplementary educational monographs: No. 48. A Study in factor analysis: The stability of a bi-factor solution.

  • Jennrich, R.I. (1974). Simplified formulae for SEs in maximum likelihood factor analysis. British Journal of Mathematical and Statistical Psychology, 27, 122–131.

    Google Scholar 

  • Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.

    Article  Google Scholar 

  • Kano, Y. (1998). Improper solutions in exploratory factor analysis: Causes and treatments. In A. Rizzi, M. Vichi, & H. Bock (Eds.), Advances in data sciences and classification (pp. 375–382). Berlin: Springer.

    Google Scholar 

  • Kano, Y., & Shapiro, A. (1987). On asymptotic variance of uniqueness estimators in factor analysis. South African Statistical Journal, 21, 131–136.

    Google Scholar 

  • Kano, Y., Bentler, P.M., & Mooijaart, A. (1993). Additional information and precision of estimators in multivariate structural models. In K. Matusita, T. Hayakawa et al. (Eds.), Statistical sciences and data analysis: Proceedings of the 3rd Pacific area statistical conference (pp. 187–196). Zeist: VSP International.

    Google Scholar 

  • Lawley, D.N., & Maxwell, A.E. (1971). Factor analysis as a statistical method (2nd ed.). New York: American Elsevier.

    Google Scholar 

  • Maxwell, A.E. (1959). Statistical methods in factor analysis. Psychological Bulletin, 56, 228–235.

    Article  PubMed  Google Scholar 

  • Ogasawara, H. (2003a). Oblique factors and components with independent clusters. Psychometrika, 68, 299–321.

    Article  Google Scholar 

  • Ogasawara, H. (2003b). A supplementary note on the paper “Oblique factors and components with independent clusters”. Economic Review, Otaru University of Commerce, 53, 55–66.

    Google Scholar 

  • Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye, & C.C. Clogg (Eds.), Latent variables analysis: applications for developmental research (pp. 399–419). Newbury Park: Sage.

    Google Scholar 

  • Shapiro, A., & Browne, M. (1987). Analysis of covariance structures under elliptical distributions. Journal of the American Statistical Association, 82, 1092–1097.

    Article  Google Scholar 

  • Spearman, C. (1904). “General intelligence” objectively determined and measured. American Journal of Psychology, 15, 201–293.

    Article  Google Scholar 

  • Spearman, C., & Holzinger, K.J. (1924). The sampling error in the theory of two factors. British Journal of Psychology, 15, 17–19.

    Google Scholar 

  • Thurstone, L.L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • van Driel, O.P. (1978). On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika, 43, 225–243.

    Article  Google Scholar 

  • Wishart, J. (1928). Sampling errors in the theory of two factors. British Journal of Psychology, 19, 180–187.

    Google Scholar 

  • Yuan, K.-H., & Bentler, P.M. (1999). On asymptotic distributions of normal theory MLE in covariance structure analysis under some nonnormal distributions. Statistics & Probability Letters, 42, 107–113.

    Article  Google Scholar 

  • Yuan, K.-H., & Bentler, P.M. (2000). On equivariance and invariance of standard errors in three exploratory factor models. Psychometrika, 65, 121–133.

    Article  Google Scholar 

  • Yuan, K.-H., & Hayashi, K. (2006). Standard errors in covariance structure models: asymptotics versus bootstrap. British Journal of Mathematical and Statistical Psychology, 59, 397–417.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Hai Yuan.

Additional information

The research was supported by Grants DA00017 and DA01070 from the National Institute on Drug Abuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, KH., Cheng, Y. & Zhang, W. Determinants of Standard Errors of MLEs in Confirmatory Factor Analysis. Psychometrika 75, 633–648 (2010). https://doi.org/10.1007/s11336-010-9169-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-010-9169-1

Keywords

Navigation