Skip to main content

Advertisement

Log in

Single-Chain VEGF/Cy5.5 Targeting VEGF Receptors to Indicate Atherosclerotic Plaque Instability

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Unstable plaques may cause clinical events. Plaque destabilization results from the synergy between intraplaque angiogenesis and inflammation. Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are considered to be involved in these processes. We investigated the efficacy of the anti-VEGFR mimic single-chain VEGF (scVEGF) to map intra-plaque VEGFR expression and atherosclerotic plaque instability using near-infrared fluorescence (NIRF).

Procedures

Human carotid plaques were retrieved from 15 symptomatic and five asymptomatic patients. NIRF plaque imaging was performed pre-/post-incubation with scVEGF/Cy5.5. Biopsies taken from regions with high (hot spot) and low (cold spot) NIRF signals were examined for VEGF-A, VEGFR-1 and VEGFR-2 mRNA expression levels using real-time RT-PCR analysis. Immunohistochemistry for CD31 (endothelium), CD68 (macrophages) and αSMA (smooth muscle cells) was performed to evaluate plaque composition.

Results

NIRF imaging of 20 plaques revealed a heterogeneous distribution of scVEGF/Cy5.5 binding. After incubation NIRF activity increased from 3.9×10−5 ± 5.2×10−6 to 3.0×10−4 ± 2.2×10−5 and 5.8×10−5 ± 1.9×10−5 to 3.1×10−4 ± 1.9×10−5 photons/s/cm2/sr/illumination intensity on the intraluminal and extraluminal side, respectively (both p < 0.001). Real-time RT-PCR analysis showed a ~1.2- and ~16.4-fold increased mRNA expression of VEGFR-1 and VEGFR-2, respectively, in hot spots (vs. cold spots). Immunohistochemistry exhibited higher intraplaque capillary density in hot spots (vs. cold spots) (17.2 ± 3.7 vs. 5.4 ± 2.2 capillary/mm2; p = 0.037). Hot spots contained significantly reduced numbers of α-SMA-positive cells (vs. cold spots) (2.2 ± 0.7 % vs. 6.9 ± 1.5 %; p = 0.038). Finally, a ~2-fold increase of CD68+ infiltrating macrophages within hot spots (vs. cold spots) was observed (not significant, p = 0.17). Significant higher capillary density in hot spots (vs. cold spots) was observed in plaques from symptomatic patients but not in plaques from asymptomatic patients.

Conclusion

Our data support that scVEGF/Cy5.5 is a suitable indicator for plaque instability and a promising diagnostic tool for risk assessment in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mauriello A, Sangiorgi GM, Virmani R et al (2010) A pathobiologic link between risk factors profile and morphological markers of carotid instability. Atherosclerosis 208:572–580

    Article  PubMed  CAS  Google Scholar 

  2. Rothwell PM, Gibson R, Warlow CP (2000) Interrelation between plaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. On behalf of the European Carotid Surgery Trialists' Collaborative Group. Stroke 31:615–621

    Article  PubMed  CAS  Google Scholar 

  3. Bjornheden T, Levin M, Evaldsson M, Wiklund O (1999) Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 19:870–876

    Article  PubMed  CAS  Google Scholar 

  4. Ahmad S, Hewett PW, Wang P et al (2006) Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ Res 99:715–722

    Article  PubMed  CAS  Google Scholar 

  5. Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    Article  PubMed  CAS  Google Scholar 

  6. de Vries C, Escobedo JA, Ueno H et al (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991

    Article  PubMed  Google Scholar 

  7. Terman BI, Dougher-Vermazen M, Carrion ME et al (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187:1579–1586

    Article  PubMed  CAS  Google Scholar 

  8. Chang SH, Feng D, Nagy JA et al (2009) Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 175:1768–1776

    Article  PubMed  CAS  Google Scholar 

  9. O'Brien KD, Allen MD, McDonald TO et al (1993) Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92:945–951

    Article  PubMed  Google Scholar 

  10. O'Brien KD, McDonald TO, Chait A et al (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 93:672–682

    Article  PubMed  Google Scholar 

  11. Post S, Peeters W, Busser E et al (2008) Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density. J Vasc Res 45:244–250

    Article  PubMed  CAS  Google Scholar 

  12. Bhardwaj S, Roy H, Heikura T, Yla-Herttuala S (2005) VEGF-A, VEGF-D and VEGF-D(DeltaNDeltaC) induced intimal hyperplasia in carotid arteries. Eur J Clin Invest 35:669–676

    Article  PubMed  CAS  Google Scholar 

  13. Celletti FL, Waugh JM, Amabile PG et al (2001) Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7:425–429

    Article  PubMed  CAS  Google Scholar 

  14. Holm PW, Slart RH, Zeebregts CJ et al (2009) Atherosclerotic plaque development and instability: a dual role for VEGF. Ann Med 41:257–264

    Article  PubMed  CAS  Google Scholar 

  15. Wallis de Vries BM, Hillebrands JL, van Dam GM et al (2009) Images in cardiovascular medicine. Multispectral near-infrared fluorescence molecular imaging of matrix metalloproteinases in a human carotid plaque using a matrix-degrading metalloproteinase-sensitive activatable fluorescent probe. Circulation 119:e534–e536

    Article  PubMed  CAS  Google Scholar 

  16. Hermus L, van Dam GM, Zeebregts CJ (2010) Advanced carotid plaque imaging. Eur J Vasc Endovasc Surg 39:125–133

    Article  PubMed  CAS  Google Scholar 

  17. Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509

    Article  PubMed  CAS  Google Scholar 

  18. Ahmed A, Dunk C, Kniss D, Wilkes M (1997) Role of VEGF receptor-1 (Flt-1) in mediating calcium-dependent nitric oxide release and limiting DNA synthesis in human trophoblast cells. Lab Invest 76:779–791

    PubMed  CAS  Google Scholar 

  19. Bussolati B, Dunk C, Grohman M et al (2001) Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am J Pathol 159:993–1008

    Article  PubMed  CAS  Google Scholar 

  20. Brown LF, Detmar M, Claffey K et al (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79:233–269

    PubMed  CAS  Google Scholar 

  21. Feng D, Nagy JA, Brekken RA et al (2000) Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors. J Histochem Cytochem 48:545–556

    Article  PubMed  CAS  Google Scholar 

  22. Feng D, Nagy JA, Hipp J et al (1997) Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol 504(Pt 3):747–761

    Article  PubMed  CAS  Google Scholar 

  23. Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  PubMed  CAS  Google Scholar 

  24. Moreno PR, Purushothaman KR, Zias E et al (2006) Neovascularization in human atherosclerosis. Curr Mol Med 6:457–477

    Article  PubMed  CAS  Google Scholar 

  25. Shaalan WE, Cheng H, Gewertz B et al (2004) Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J Vasc Surg 40:262–269

    Article  PubMed  Google Scholar 

  26. Moura R, Tjwa M, Vandervoort P et al (2008) Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE−/− mice. Circ Res 103:1181–1189

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark J. Zeebregts.

Additional information

M.K. Lam and S. Al-Ansari contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, M.K., Al-Ansari, S., van Dam, G.M. et al. Single-Chain VEGF/Cy5.5 Targeting VEGF Receptors to Indicate Atherosclerotic Plaque Instability. Mol Imaging Biol 15, 250–261 (2013). https://doi.org/10.1007/s11307-012-0594-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0594-7

Key words

Navigation