Skip to main content
Log in

Dietary sugars affect cold tolerance of Drosophila melanogaster

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In spite of the extensive knowledge of the biology and the genetics of Drosophila melanogaster, the mechanisms by which this fly builds up cold tolerance remain poorly understood. Recent studies have reported that acclimation-mediated acquisition of cold tolerance is associated with moderate accumulation of sugars in drosophilids. However, it is not known whether there is a genuine causative link between cold tolerance and body sugar accumulation in Drosophila flies. We thus tested whether increasing body sugars levels, via dietary enrichment, will promote the cold tolerance of D. melanogaster adults. We gradually augmented the concentration of four different sugars (sucrose, fructose, glucose and trehalose) in rearing diets and tested the basal cold tolerance (acute and chronic). Using SIM-GC/MS approach, we verified whether feeding of larvae and adults on sugar-enriched diets was associated with increasing body sugars. We also tested whether development, body mass, fat stores, metabolites composition and metabolic pathways were altered by these dietary manipulations. The data confirm an effective incorporation of all sugars. Contrary to the expectation, cold tolerance was negatively affected by exogenous sugars, especially when supplemented at high concentrations. Rearing on high-sugar doses induced system-wide metabolic alteration associated with carbohydrate metabolism imbalance, a developmental delay and a fresh mass reduction. Our data show that high dietary sugars create a metabolic imbalance and negatively affect cold tolerance. This study provides an intriguing connection between nutritional conditions and thermal trait. It also underlines that careful attention should be given to dietary factors when studying thermal traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aida, K., Tawata, M., Shindo, H., & Onaya, T. (1990). Clinical significance of erythrocyte sorbitol blood glucose ratios in type II diabetes mellitus. Diabetes Care, 13, 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S., & Mayntz, D. (2010). Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. Journal of Insect Physiology, 56, 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Backhaus, B., Sulkowski, E., & Schlote, F. W. (1984). A semi-synthetic, general-purpose medium for Drosophila melanogaster. Drosophila Information Service, 60, 210–212.

    Google Scholar 

  • Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., et al. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metabolism, 12, 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Brent, M. M., & Oster, I. I. (1974). Nutritional substitution-a new approach to microbial control for Drosophila cultures. Drosophila Information Service, 51, 155–157.

    Google Scholar 

  • Broughton, S. J., Piper, M. D. W., Ikeya, T., Bass, T. M., Jacobson, J., Driege, Y., et al. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences of the United States of America, 102, 3105–3110.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625.

    Article  PubMed  CAS  Google Scholar 

  • Burger, J. M. S., Hwangbo, D. S., Corby-Harris, V., & Promislow, D. E. L. (2007). The functional costs and benefits of dietary restriction in Drosophila. Aging Cell, 6, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. P., & Walker, V. K. (1994). Cold-shock and chilling tolerance in Drosophila. Journal of Insect Physiology, 40, 661–669.

    Article  Google Scholar 

  • Colinet, H., Larvor, V., Laparie, M., & Renault, D. (2012a). Exploring the plastic response to cold acclimation through metabolomics. Functional Ecology, 26, 711–722.

    Article  Google Scholar 

  • Colinet, H., Lee, S. F., & Hoffmann, A. (2010). Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. Journal of Experimental Biology, 213, 4146–4150.

    Article  PubMed  CAS  Google Scholar 

  • Colinet, H., & Renault, D. (2012). Metabolic fingerprinting of acute CO2 exposure in Drosophila melanogaster. Biology Letters,. doi:10.1098/rsbl.2012.0601.

    PubMed  Google Scholar 

  • Colinet, H., Renault, D., Charoy-Guével, B., & Com, E. (2012b). Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS One, 7, e32606.

    Article  PubMed  CAS  Google Scholar 

  • Doucet, D., Walker, V. K., & Qin, W. (2009). The bugs that came in from the cold: Molecular adaptations to low temperatures in insects. Cellular and Molecular Life Sciences, 66, 1404–1418.

    Article  PubMed  CAS  Google Scholar 

  • Enell, L. E., Kapan, N., Söderberg, J. A. E., Kahsai, L., & Nässel, D. R. (2010). Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila. PLoS One, 5, e15780.

    Article  PubMed  CAS  Google Scholar 

  • Farkaš, R., & Knopp, J. (1998). Genetic and hormonal control of cytosolic malate dehydrogenase activity in Drosophila melanogaster. General Physiology and Biophysics, 17(37–50), 37.

    PubMed  Google Scholar 

  • Geer, B. W., Woodward, C. G., & Marshall, S. D. (1978). Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. II. The biochemical basis of dietary carbohydrate and d-glycerate modulation. Journal of Experimental Zoology, 203, 391–402.

    Article  CAS  Google Scholar 

  • Grubor-Lajsic, G., Block, W., Telesmanic, M., Jovanovic, A., Stevanovic, D., & Baca, F. (1997). Effect of cold acclimation on the antioxidant defense system of two larval lepidoptera (noctuidae). Archives of Insect Biochemistry and Physiology, 36, 1–10.

    Article  CAS  Google Scholar 

  • Haselton, A. T., & Fridell, Y. W. (2010). Adult Drosophila melanogaster as a model for the study of glucose homeostasis. Aging, 2, 523–526.

    PubMed  CAS  Google Scholar 

  • Jing, X. H., Wang, X. H., & Kang, L. E. (2005). Chill injury in the eggs of the migratory locust, Locusta migratoria (Orthoptera: Acrididae): the time-temperature relationship with high-temperature interruption. Insect Science, 12, 171–178.

    Article  Google Scholar 

  • Kelty, J. D., & Lee, R. E, Jr. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology, 204, 1659–1666.

    PubMed  CAS  Google Scholar 

  • Kimura, M. T. (1982). Inheritance of cold hardiness and sugar contents in two closely related species, Drosophila takahashii and Drosophila lutescens. Japanese Journal of Genetics, 57, 575–580.

    Article  Google Scholar 

  • Korsloot, A., Van Gestel, C. A. M., & Van Straalen, N. M. (2004). Environmental stress and cellular response in Arthropods. Boca Rota: CRC Press.

    Google Scholar 

  • Koštál, V., Korbelová, J., Rozsypal, J., Zahradníčková, H., Cimlová, J., Tomčala, A., et al. (2011a). Long-term cold acclimation extends survival time at 0 °C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS One, 6, e25025.

    Article  PubMed  Google Scholar 

  • Koštál, V., Šimek, P., Zahradníčková, H., Cimlová, J., & Štětina, T. (2012). Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proceedings of the National Academy of Sciences of the United States of America, 109, 3270–3274.

    Article  PubMed  Google Scholar 

  • Koštál, V., Zahradníčková, H., & Šimek, P. (2011b). Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 108, 13041–13046.

    Article  PubMed  Google Scholar 

  • Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J., & Renault, D. (2011). Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 158, 229–234.

    Article  CAS  Google Scholar 

  • Laparie, M., Larvor, V., Frenot, Y., & Renault, D. (2011). Starvation resistance and effects of diet on energy reserves in a predatory ground beetle (Merizodus soledadinus: Carabidae) invading the Kerguelen Islands. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 161, 122–129.

    Article  Google Scholar 

  • Lee, R. E, Jr. (2010). A primer on insect cold-tolerance. In D. L. Denlinger & R. E. Lee Jr (Eds.), Low temperature biology of insects (pp. 3–35). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lee, A. Y. W., & Chung, S. S. M. (1999). Contributions of polyol pathway to oxidative stress in diabetic cataract. The FASEB Journal, 13, 23–30.

    CAS  Google Scholar 

  • Lewis, E. B. (1960). A new standard food medium. Drosophila Information Service, 34, 117–118.

    Google Scholar 

  • Lorenzi, M. (2007). The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Experimental Diabetes Research, 2007, 61038.

    Article  PubMed  Google Scholar 

  • Lushchak, O. V., Rovenko, B. M., Gospodaryov, D. V., & Lushchak, V. I. (2011). Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 160, 27–34.

    Article  CAS  Google Scholar 

  • Malmendal, A., Overgaard, J., Bundy, J. G., Sorensen, J. G., Nielsen, N. C., Loeschcke, V., et al. (2006). Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 291, R205–R212.

    Article  PubMed  CAS  Google Scholar 

  • Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G., & Markow, T. A. (2011). Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. The Journal of Nutrition, 141, 1127–1133.

    Article  PubMed  CAS  Google Scholar 

  • Mullinax, T. R., Mock, J. N., McEvily, A. J., & Harrison, J. H. (1982). Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. Journal of Biological Chemistry, 257, 13233–13239.

    PubMed  CAS  Google Scholar 

  • Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., et al. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease Models and Mechanisms, 4, 842–849.

    Article  PubMed  CAS  Google Scholar 

  • Negre-Salvayre, A., Salvayre, R., Augé, N., Pamplona, R., & Portero-Otín, P. (2009). Hyperglycemia and glycation in diabetic complications. Antioxidants & Redox Signaling, 11, 3071–3109.

    Article  CAS  Google Scholar 

  • Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C., et al. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53, 1218–1232.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, L., Alic, N., Bjedov, I., & Piper, M. D. W. (2011). Ageing in Drosophila: The role of the insulin/Igf and TOR signalling network. Experimental Gerontology, 46, 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, L., Piper, M. D. W., & Mair, W. (2005). Dietary restriction in Drosophila. Mechanisms of Ageing and Development, 126, 938–950.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, V. A., Mueller, L. D., & Gibbs, A. G. (1999). Osmoregulation in Drosophila melanogaster selected for urea tolerance. Journal of Experimental Biology, 202, 2349–2358.

    PubMed  CAS  Google Scholar 

  • Pizarro-Delgado, J., Braun, M., Hernandez-Fisac, I., Martin-Del-Rio, R., & Tamarit-Rodriguez, J. (2010). Glucose promotion of GABA metabolism contributes to the stimulation of insulin secretion in β-cells. Biochemical Journal, 431, 381–389.

    PubMed  CAS  Google Scholar 

  • R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rako, L., & Hoffmann, A. A. (2006). Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology, 52, 94–104.

    Article  PubMed  CAS  Google Scholar 

  • Reed, L. K., Williams, S., Springston, M., Brown, J., Freeman, K., Desroches, C. E., et al. (2010). Genotype-by-diet interactions drive metabolic phenotype variation in Drosophila melanogaster. Genetics, 185, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  • Rojas, R. R., & Leopold, R. A. (1996). Chilling injury in the housefly: Evidence for the role of oxidative stress between pupariation and emergence. Cryobiology, 33, 447–458.

    Article  Google Scholar 

  • Rzezniczak, T. Z., Douglas, L. A., Watterson, J. H., & Merritt, T. J. S. (2011). Paraquat administration in Drosophila for use in metabolic studies of oxidative stress. Analytical Biochemistry, 419, 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Sang, J. H. (1956). The quantitative nutritional requirements of Drosophila Melanogaster. Journal of Experimental Biology, 33, 45–72.

    CAS  Google Scholar 

  • Saunders, D., Henrich, V., & Gilbert, L. (1989). Induction of diapause in Drosophila melanogaster: photoperiodic regulation and impact of arrhythmic clock mutations on time measurement. Proceedings of the National Academy of Sciences of the United States of America, 86, 3748–3752.

    Article  PubMed  CAS  Google Scholar 

  • Shreve, S. M., Yi, S. X., & Lee, R. E, Jr. (2007). Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster. Cryoletters, 28, 33–37.

    PubMed  CAS  Google Scholar 

  • Singh, P., Mahadi, F., Roy, A., & Sharma, P. (2009). Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian Journal of Clinical Biochemistry, 24, 324–342.

    Article  PubMed  CAS  Google Scholar 

  • Skorupa, D. A., Dervisefendic, A., Zwiener, J., & Pletcher, S. D. (2008). Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell, 7, 478–490.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. M., Hoi, J. T., Eissenberg, J. C., Shoemaker, J. D., Neckameyer, W. S., Ilvarsonn, A. M., et al. (2007). Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. The Journal of Nutrition, 137, 2006–2012.

    PubMed  CAS  Google Scholar 

  • Storey, K. B. (1983). Metabolism and bound water in overwintering insects. Cryobiology, 20, 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Storey, K. B., Baust, J. G., & Storey, J. M. (1981). Intermediary metabolism during low-temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. Journal of Comparative Physiology, 144, 183–190.

    CAS  Google Scholar 

  • Storey, J. M., & Storey, K. B. (2005). Cold hardiness and freeze tolerance. In K. B. Storey (Ed.), Functional metabolism: Regulaion and adaption (pp. 473–503). Hoboken: John Wiley and Sons Inc.

    Chapter  Google Scholar 

  • Storey, K. B., & Storey, J. M. (2012). Insect cold hardiness: metabolic, gene, and protein adaptation. Canadian Journal of Zoology, 90, 456–475.

    CAS  Google Scholar 

  • Teets, N. M., Peyton, J. T., Ragland, G. J., Colinet, H., Renault, D., Hahn, D. A., et al. (2012). Uncovering molecular mechanisms of cold tolerance in a temperate flesh fly using a combined transcriptomic and metabolomic approach. Physiological Genomics, 44, 764–777.

    Article  PubMed  CAS  Google Scholar 

  • Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., Le Roux, P. C., & Chown, S. L. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214, 3713–3725.

    Article  PubMed  Google Scholar 

  • Toivonen, J. M., Walker, G. A., Martinez-Diaz, P., Bjedov, I., Driege, Y., Jacobs, H. T., et al. (2007). No influence of on lifespan in Drosophila after correction for genetic and cytoplasmic background effects. PLoS Genetics, 3, e95.

    Article  PubMed  Google Scholar 

  • Vesala, L., Salminen, T. S., Koštál, V., Zahradnicková, H., & Hoikkala, A. (2012). Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. The Journal of Experimental Biology, 215, 2891–2897.

    Article  PubMed  CAS  Google Scholar 

  • Walters, K. R., Pan, Q. F., Serianni, A. S., & Duman, J. G. (2009). Cryoprotectant biosynthesis and the selective accumulation of threitol in the freeze-tolerant Alaskan beetle, Upis ceramboides. Journal of Biological Chemistry, 284, 16822–16831.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., & Clark, A. G. (1995). Physiological genetics of the response to a high-sucrose diet by Drosophila melanogaster. Biochemical Genetics, 33, 149–165.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, G. R., Hendrix, D. L., & Salvucci, M. E. (1998). A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 44, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., & Wishart, D. S. (2010). MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26, 2342–2344.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fonds de la Recherche Scientifique—FNRS in Belgium and ‘Observatoire des Sciences Universelles Rennais (OSUR)’. This paper is number BRC271 of the Biodiversity Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Colinet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colinet, H., Larvor, V., Bical, R. et al. Dietary sugars affect cold tolerance of Drosophila melanogaster . Metabolomics 9, 608–622 (2013). https://doi.org/10.1007/s11306-012-0471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0471-z

Keywords

Navigation