Skip to main content

Advertisement

Log in

Lipid profiling of the model temperate grass, Brachypodium distachyon

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Lipids are essential metabolites in cells and they fulfil a variety of functions, including structural components of cellular membranes, energy storage, cell signalling, and membrane trafficking. In plants, changes in lipid composition have been observed in diverse responses ranging from abiotic and biotic stress to organogenesis. Knowledge of the lipid composition is an important first step towards understanding the function of lipids in any given biological system. As Brachypodium distachyon is emerging as the model species for temperate grass research, it is therefore fundamentally important to gain insights of its lipid composition. We used HPLC-coupled with tandem mass spectrometry to profile and quantify levels of sphingolipids and glycerophospholipids in shoots and undifferentiated cells in suspension cultures of B. distachyon. A total of 123 lipids belonging to 10 classes were identified and quantified. Our results showed that there are differences in lipid profiles and levels of individual lipid species between shoots and undifferentiated cells in suspension cultures. Additionally, we showed that 4-sphingenine (d18:1Δ4) is the main unsaturated dihydroxy-long chain base (LCB) in B. distachyon, and we were unable to detect d18:1Δ8, which is the main unsaturated dihydroxy-LCB in the model dicotyledonous species, Arabidopsis thaliana. This work serves as the first step towards a comprehensive characterization of the B. distachyon lipidome that will complement future biochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allwood, J. W., Ellis, D. I., Heald, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic acid and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 46, 351–368.

    Article  PubMed  CAS  Google Scholar 

  • Alves, S. C., Worland, B., Thole, V., Snape, J. W., Bevan, M. W., & Vain, P. (2009). A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nature Protocols, 4, 638–649.

    Article  PubMed  CAS  Google Scholar 

  • Bamba, T., Shimonishi, N., Matsubara, A., Hirata, K., Nakazawa, Y., Kobayashi, A., et al. (2008). High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. Journal of Bioscience and Bioengineering, 105, 460–469.

    Article  PubMed  CAS  Google Scholar 

  • Bartke, N., Fischbeck, A., & Humpf, H.-U. (2006). Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Molecular Nutrition & Food Research, 50, 1201–1211.

    Article  CAS  Google Scholar 

  • Bossolini, E., Wickler, T., Knobel, P. A., & Keller, B. (2007). Comparison of orthologoous loci from small grass genome Brachypodium and rice: Implications for wheat genomics and grass genome annotation. Plant Journal, 49, 704–717.

    Article  PubMed  CAS  Google Scholar 

  • Burgos, A., Szymanski, J., Seiwert, B., Degenkolbe, T., Hannah, M. A., Giavalisco, P., & Willmitzer, L. (2011). Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant Journal. doi:10.1111/j.1365-313X.2011.04531.x.

  • Coursol, S. C., Fan, L.-M., Le Stunff, H., Spiegel, S., Gilroy, S., & Assmann, S. M. (2003). Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature, 423, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Devaiah, S. P., Roth, M. R., Baughman, E., Li, M., Tamura, P., Jeannotte, R., et al. (2006). Quantitative profiling of polar glycerolipid species and the role of phospholipase Dα1 in defining the lipid species in Arabidopsis tissues. Phytochemistry, 67, 1907–1924.

    Article  PubMed  CAS  Google Scholar 

  • Draper, J., Mur, L. A. J., Jenkins, G., Ghosh-Biswas, G. C., Bablak, P., Hasterok, R., et al. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 127, 1539–1555.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, T. M., Lynch, D. V., Michaelson, L. V., & Napier, J. A. (2004). A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Annals of Botany, 93, 483–497.

    Article  PubMed  CAS  Google Scholar 

  • Fahy, E., Subramaniam, S., Brown, H., Glass, C., Merrill, J. A., Murphy, R., et al. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, 839–861.

    Article  PubMed  CAS  Google Scholar 

  • Fahy, E., Subramaniam, S., Murphy, R., Nishijima, M., Raetz, C., Shimizu, T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14.

    Article  PubMed  Google Scholar 

  • Fujino, Y., Ohnishi, M., & Ito, S. (1985). Molecular species of ceramide and mono-, di-, tri-, and tetraglycosylceramide in bran and endosperm of rice grains. Agricultural and Biological Chemistry, 49, 2753–2762.

    Article  CAS  Google Scholar 

  • Gao, F., Tian, X., Wen, D., Liao, J., Wang, T., & Liu, H. (2006). Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochimica et Biophysica Acta, 1761, 667–676.

    Article  PubMed  CAS  Google Scholar 

  • Garvin, D. F. (2007a). Brachypodium: A new monocot model plant system emerges. Journal of the Science of Food and Agriculture, 87, 1177–1179.

    Article  CAS  Google Scholar 

  • Garvin, D. F. (2007b). Brachypodium distachyon: A new model system for structural and functional analysis of grass genomes. In R. K. Varshney & R. M. Koebner (Eds.), Model plants & crop improvement (pp. 109–123). Boca Raton: Taylor & Francis Press.

    Google Scholar 

  • Han, P. P., Zhou, J., & Yuan, Y. J. (2009). Analysis of phospholipids, sterols, and fatty acids in Taxus chinensis var. mairei cells in response to shear stress. Biotechnology and Applied Biochemistry, 54, 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington, A. M., & Drøbak, B. K. (1992). Inositol-containing lipids in higher plants. Progress in Lipid Research, 31, 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Horn, P. J., Ledbetter, N. R., James, C. N., Hoffman, W. D., Case, C. R., Verbeck, G. F., & Chapman, K. D. (2011). Visualization of lipid droplet composition by direct organelle mass spectrometry. Journal of Biological Chemistry, 286, 3298–3306.

    Article  PubMed  CAS  Google Scholar 

  • Imai, H., Ohnishi, M., Hotsubo, K., Kojima, M., & Ito, S. (1997). Sphingoid base composition of cerebrosides from plant leaves. Bioscience, Biotechnology, and Biochemistry, 61, 351–353.

    Article  CAS  Google Scholar 

  • Kawaguchi, M., Imai, H., Naoe, M., Yasui, Y., & Ohnishi, M. (2000). Cerebrosides in grapevine leaves: Distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Bioscience, Biotechnology, and Biochemistry, 64, 1271–1273.

    Article  PubMed  CAS  Google Scholar 

  • Khalil, M. B., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., et al. (2010). Lipidomics era: Accomplishments and challenges. Mass Spectrometry Reviews, 29, 877–929.

    Article  CAS  Google Scholar 

  • Larson, T. R., & Graham, I. A. (2006). Targeted profiling of fatty acids and related metabolites. In K. Saito, R. A. Dixon, & L. Willmitzer (Eds.), Plant metabolomics (pp. 211–228). Berlin: Springer.

    Chapter  Google Scholar 

  • Li, J., Cui, Z., Zhao, S., & Sidman, R. L. (2007). Unique glycerophospholipid signature in retinal stem cells correlates with enzymatic functions of diverse long-chain acyl-CoA synthetases. Stem Cells, 25, 2864–2873.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D. V., Chen, M., & Cahoon, E. B. (2009). Lipid signalling in Arabidopsis: No sphingosine? No problem!. Trends in Plant Science, 14, 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D. V., & Dunn, T. M. (2004). An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist, 161, 677–702.

    Article  CAS  Google Scholar 

  • Markham, J. E., & Jaworski, J. G. (2007). Rapid measurement of sphingolipids from Arabidopsis thaliana by reverse-phase high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 1304–1314.

    Article  PubMed  CAS  Google Scholar 

  • Markham, J. E., Jia, L., Cahoon, E. B., & Jaworski, J. G. (2006). Separation and identification of major plant sphingolipid classes from leaves. Journal of Biological Chemistry, 281, 22684–22694.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr., Caligan, T. B., Wang, E., Peters, K., & Ou, J. (2000). Analysis of sphingoid bases and sphingoid base 1-phosphates by high performance liquid chromatography. Methods in Enzymology, 312, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, L. V., Zäuner, S., Markham, J. E. M., Haslam, R. P., Desikan, R., Mugford, S., et al. (2009). Functional characterization of a higher plant sphingolipid Δ4-desaturase: Defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiology, 149, 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Minamioka, H., & Imai, H. (2009). Sphingoid long-chain base composition of glucosylceramides in Fabaceae: A phylogenetic interpretation of Fabeae. Journal of Plant Research, 122, 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Ng, C. K.-Y., Carr, K., McAinsh, M. R., Powell, B., & Hetherington, A. M. (2001). Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 410, 596–599.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, M., Ito, S., & Fujino, Y. (1985). Structural characterization of sphingolipids in leafy rice stems. Agricultural and Biological Chemistry, 49, 3327–3329.

    Article  CAS  Google Scholar 

  • Okazaki, Y., Kamide, Y., Yokota, M., & Saito, K. (2011) Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics. doi:10.1007/s/1306-011-0318-z.

  • Opanowicz, M., Vain, P., Draper, J., Parker, D., & Doonan, J. H. (2008). Brachypodium distachyon: Making hay with wild grass. Trends in Plant Science, 13, 172–177.

    Article  PubMed  CAS  Google Scholar 

  • Păcurar, D. I., Thordal-Christensen, H., Nielsen, K. K., & Lenk, I. (2007). A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Research, 17, 965–975.

    Article  PubMed  Google Scholar 

  • Park, H., Haynes, C. A., Nairn, A. V., Kulik, M., Dalton, S., Moremen, K., et al. (2010). Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryogenic stem cells and embryoid bodies. Journal of Lipid Research, 51, 480–489.

    Article  PubMed  CAS  Google Scholar 

  • Pata, M. O., Hannun, Y. A., & Ng, C. K.-Y. (2010). Plant sphingolipids: Decoding the enigma of the Sphinx. New Phytologist, 185, 611–630.

    Article  PubMed  CAS  Google Scholar 

  • Spassieva, S., & Hille, J. (2003). Plant sphingolipids today—are they still enigmatic? Plant Biology, 5, 125–136.

    Article  CAS  Google Scholar 

  • Sperling, P., & Heinz, E. (2003). Plant sphingolipids: Structural diversity, biosynthesis, first genes and functions. Biochimica et Biophysica Acta, 1632, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Takakuwa, N., Saito, K., Ohnishi, M., & Oda, Y. (2005). Determination of glucosylceramide contents in crop tissues and by-products from their processing. Bioresource Technology, 96, 1089–1092.

    Article  PubMed  CAS  Google Scholar 

  • The International Brachypodium Initiative. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.

    Article  Google Scholar 

  • Thole, V., Alves, S. C., Worland, B., Bevan, M. W., & Vain, P. (2009). A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nature Protocols, 4, 650–661.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, M., & Steponkus, P. L. (1994). A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology, 104, 479–496.

    PubMed  CAS  Google Scholar 

  • Vain, P., Worland, B., Thile, V., McKenzie, N., Alves, S. C., Opanowicz, M., et al. (2008). Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnology Journal, 6, 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J. P., Garvin, D. F., Leong, O. M., & Hayden, D. M. (2006a). Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell, Tissue and Organ Culture, 84, 199–211.

    Article  Google Scholar 

  • Vogel, J. P., Gu, Y. Q., Twigg, P., Lazo, G. R., Laudencia-Chingcuanco, D., Hayden, D. M., et al. (2006b). EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theoretical and Applied Genetics, 113, 186–195.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J. P., & Hill, T. (2007). High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Reports, 27, 471–478.

    Article  PubMed  Google Scholar 

  • Wang, L., Wang, T., & Fehr, W. R. (2006). HPLC quantification of sphingolipids in soybeans with modified palmitate content. Journal of Agricultural and Food Chemistry, 54, 7422–7428.

    Article  PubMed  CAS  Google Scholar 

  • Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., et al. (2002). Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. Journal Biological Chemistry, 277, 31994–32002.

    Article  CAS  Google Scholar 

  • Welti, R., Shah, J., Li, W., Li, M., Chen, J., Burke, J. J., et al. (2007). Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience, 12, 2494–2506.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 843–846.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Science Foundation Ireland (SFI) Research Frontiers Programme and Equipment Grants (06/SFI/RFP/GEN034, 06/SFI/RFP/GEN034ES, 08/SFI/RFP/EOB1087) to C.K-Y.N. and an Irish Research Council for Science, Engineering, and Technology (IRCSET) Postgraduate Scholarship to J.P.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl K.-Y. Ng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurul Islam, M., Chambers, J.P. & Ng, C.KY. Lipid profiling of the model temperate grass, Brachypodium distachyon . Metabolomics 8, 598–613 (2012). https://doi.org/10.1007/s11306-011-0352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0352-x

Keywords

Navigation