Skip to main content

Advertisement

Log in

Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

One of the promises of environmental metabolomics, together with other ecotoxicogenomic approaches, is that it can give information on toxic compound mechanism of action (MOA), by providing a specific response profile or fingerprint. This could then be used either for screening in the context of chemical risk assessment, or potentially in contaminated site assessment for determining what compound classes were causing a toxic effect. However for either of these two ends to be achievable, it is first necessary to know if different compounds do indeed elicit specific and distinct metabolic profile responses. Such a comparative study has not yet been carried out for the earthworm Lumbricus rubellus. We exposed L. rubellus to sub-lethal concentrations of three very different toxicants (CdCl2, atrazine, and fluoranthene, representing three compound classes with different expected MOA), by semi-chronic exposures in a laboratory test, and used NMR spectroscopy to obtain metabolic profiles. We were able to use simple multivariate pattern-recognition analyses to distinguish different compounds to some degree. In addition, following the ranking of individual spectral bins according to their mutual information with compound concentrations, it was possible to identify both general and specific metabolite responses to different toxic compounds, and to relate these to concentration levels causing reproductive effects in the worms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ankley, G. T., et al. (2006). Toxicogenomics in regulatory ecotoxicology. Environmental Science and Technology, 40, 4055–4065. doi:10.1021/es0630184.

    Article  PubMed  CAS  Google Scholar 

  • Bang, J. W., et al. (2008). Integrative top-down system metabolic modeling in experimental disease states via data-driven Bayesian methods. Journal of Proteome Research, 7, 497–503. doi:10.1021/pr070350l.

    Article  PubMed  CAS  Google Scholar 

  • Beckonert, O., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703. doi:10.1038/nprot.2007.376.

    Article  PubMed  CAS  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196. doi:10.1007/s11306-006-0037-z.

    Article  CAS  Google Scholar 

  • Brown, S. A., Simpson, A. J., & Simpson, M. J. (2008). Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environmental Toxicology and Chemistry, 27, 828–836. doi:10.1897/07-412.1.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., et al. (2002). Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 21, 1966–1972. doi:10.1897/1551-5028(2002)021<1966:MAOTOF>2.0.CO;2.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., et al. (2004). Environmental metabonomics: Applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology (London, England), 13, 797–806. doi:10.1007/s10646-003-4477-1.

    CAS  Google Scholar 

  • Bundy, J. G., et al. (2007). Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environmental Science and Technology, 41, 4458–4464. doi:10.1021/es0700303.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., et al. (2008). ‘Systems toxicology’ approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25. doi:10.1186/1741-7007-6-25.

    Article  PubMed  Google Scholar 

  • Calabrese, E. J. (2008). Hormesis: Why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry, 27, 1451–1474. doi:10.1897/07-541.1.

    Article  PubMed  CAS  Google Scholar 

  • Camacho, D., de la Fuente, A., & Mendes, P. (2005). The origin of correlations in metabolomics data. Metabolomics, 1, 53–63. doi:10.1007/s11306-005-1107-3.

    Article  CAS  Google Scholar 

  • Daub, C. O., Steuer, R., Selbig, J., & Kloska, S. (2004). Estimating mutual information using B-spline functions—an improved similarity measure for analysing gene expression data. BMC Bioinformatics, 5, 118. doi:10.1186/1471-2105-5-118.

    Article  PubMed  Google Scholar 

  • Duewer, D. L., Kowalski, B. R., & Schatzki, T. F. (1975). Source identification of oil spills by pattern recognition analysis of natural elemental composition. Analytical Chemistry, 47, 1573–1583. doi:10.1021/ac60359a051.

    Article  CAS  Google Scholar 

  • Ebbels, T. M., et al. (2007). Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: The consortium on metabonomic toxicology screening approach. Journal of Proteome Research, 6, 4407–4422. doi:10.1021/pr0703021.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measures in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Google Scholar 

  • Flaherty, P., Giaever, G., Kumm, J., Jordan, M. I., & Arkin, A. P. (2005). A latent variable model for chemogenomic profiling. Bioinformatics (Oxford, England), 21, 3286–3293. doi:10.1093/bioinformatics/bti515.

    Article  CAS  Google Scholar 

  • Forbes, V. E., Palmqvist, A., & Bach, L. (2006). The use and misuse of biomarkers in ecotoxicology. Environmental Toxicology and Chemistry, 25, 272–280. doi:10.1897/05-257R.1.

    Article  PubMed  CAS  Google Scholar 

  • Gartland, K. P., Beddell, C. R., Lindon, J. C., & Nicholson, J. K. (1990). A pattern recognition approach to the comparison of PMR and clinical chemical data for classification of nephrotoxicity. Journal of Pharmaceutical and Biomedical Analysis, 8, 963–968. doi:10.1016/0731-7085(90)80151-E.

    Article  PubMed  CAS  Google Scholar 

  • Gartland, K. P., Beddell, C. R., Lindon, J. C., & Nicholson, J. K. (1991). Application of pattern recognition methods to the analysis and classification of toxicological data derived from proton nuclear magnetic resonance spectroscopy of urine. Molecular Pharmacology, 39, 629–642.

    PubMed  CAS  Google Scholar 

  • Gartland, K. P., Bonner, F. W., & Nicholson, J. K. (1989). Investigations into the biochemical effects of region-specific nephrotoxins. Molecular Pharmacology, 35, 242–250.

    PubMed  CAS  Google Scholar 

  • Gong, P., et al. (2007). Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environmental Science and Technology, 41, 8195–8202. doi:10.1021/es0716352.

    Article  PubMed  CAS  Google Scholar 

  • Hillenmeyer, M. E., et al. (2008). The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. Science, 320, 362–365. doi:10.1126/science.1150021.

    Article  PubMed  CAS  Google Scholar 

  • Hines, A., Oladiran, G. S., Bignell, J. P., Stentiford, G. D., & Viant, M. R. (2007). Direct sampling of organisms from the field and knowledge of their phenotype: Key recommendations for environmental metabolomics. Environmental Science and Technology, 41, 3375–3381. doi:10.1021/es062745w.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, T. R., et al. (2000). Functional discovery via a compendium of expression profiles. Cell, 102, 109–126. doi:10.1016/S0092-8674(00)00015-5.

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen, A., Karhunne, J., & Oja, E. (2001). Independent Component Analysis. New York: Wiley.

    Book  Google Scholar 

  • Jones, O. A., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71, 601–609. doi:10.1016/j.chemosphere.2007.08.056.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S., et al. (2007). Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 76, 026209. doi:10.1103/PhysRevE.76.026209.

    Google Scholar 

  • Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31, 245–251. doi:10.1584/jpestics.31.245.

    Article  CAS  Google Scholar 

  • Maere, S., Van Dijck, P., & Kuiper, M. (2008). Extracting expression modules from perturbational gene expression compendia. BMC Systems Biology, 2, 33. doi:10.1186/1752-0509-2-33.

    Article  PubMed  Google Scholar 

  • Malmendal, A., et al. (2006). Metabolomic profiling of heat stress: Hardening and recovery of homeostasis in Drosophila. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, R205–R212. doi:10.1152/ajpregu.00867.2005.

    PubMed  CAS  Google Scholar 

  • May, S., & Bigelow, C. (2005). Modeling nonlinear dose–response relationships in epidemiologic studies: Statistical approaches and practical challenges. Dose Response, 3, 474–490. doi:10.2203/dose-response.003.04.004.

    Article  Google Scholar 

  • Meyer, P. E., Lafitte, F., & Bontempi, G. (2008). minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461. doi:10.1186/1471-2105-9-461.

    Article  PubMed  Google Scholar 

  • OECD. (1984). Guidelines for the testing of chemicals. 207. Earthworm acute toxicity tests. Paris: OECD.

    Google Scholar 

  • Owen, J., et al. (2008). Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics, 9, 266. doi:10.1186/1471-2164-9-266.

    Article  PubMed  Google Scholar 

  • Paules, R. (2003). Phenotypic anchoring: Linking cause and effect. Environmental Health Perspectives, 111, A338–A339.

    PubMed  Google Scholar 

  • Sanchez-Hernandez, J. C. (2006). Earthworm biomarkers in ecological risk assessment. Reviews of Environmental Contamination and Toxicology, 188, 85–126. doi:10.1007/978-0-387-32964-2-3.

    Article  PubMed  CAS  Google Scholar 

  • Spurgeon, D. J., Svendsen, C., Kille, P., Morgan, A. J., & Weeks, J. M. (2004). Responses of earthworms (Lumbricus rubellus) to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system. Ecotoxicology and Environmental Safety, 57, 54–64. doi:10.1016/j.ecoenv.2003.08.003.

    Article  PubMed  CAS  Google Scholar 

  • Spurgeon, D. J., Svendsen, C., Weeks, J. M., Hankard, P. K., Stubberud, H. E., & Kammenga, J. E. (2003a). Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus. Environmental Toxicology and Chemistry, 22, 1465–1472. doi:10.1897/1551-5028(2003)22<1465:QCACIO>2.0.CO;2.

    Article  PubMed  CAS  Google Scholar 

  • Spurgeon, D. J., Weeks, J. M., & van Gestel, C. A. M. (2003b). A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia, 47, 588–606.

    Google Scholar 

  • Steuer, R., Kurths, J., Daub, C. O., Weise, J., & Selbig, J. (2002). The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics (Oxford, England), 18(Suppl 2), S231–S240.

    Google Scholar 

  • Thevenaz, P., & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 9, 2083–2099. doi:10.1109/83.887976.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, E. L., et al. (2008). BioMagResBank. Nucleic Acids Research, 36, D402–D408. doi:10.1093/nar/gkm957.

    Article  PubMed  CAS  Google Scholar 

  • van Gestel, C. A., van Dis, W. A., van Breemen, E. M., & Sparenburg, P. M. (1989). Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol and 2,4-dichloroaniline. Ecotoxicology and Environmental Safety, 18, 305–312. doi:10.1016/0147-6513(89)90024-9.

    Article  PubMed  Google Scholar 

  • van Gestel, C. A., & Weeks, J. M. (2004). Recommendations of the 3rd international workshop on earthworm ecotoxicology, Aarhus, Denmark, August 2001. Ecotoxicology and Environmental Safety, 57, 100–105.

    Article  PubMed  Google Scholar 

  • van Straalen, N. M., & Roelofs, D. (2008). Genomics technology for assessing soil pollution. Journal of Biology (Online), 7, 19. doi:10.1186/jbiol80.

    Google Scholar 

  • Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310, 943–948. doi:10.1016/j.bbrc.2003.09.092.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R. (2007). Metabolomics of aquatic organisms: The new ‘omics’ on the block. Marine Ecology Progress Series, 332, 301–306. doi:10.3354/meps332301.

    Article  CAS  Google Scholar 

  • Walker, M. G., Volkmuth, W., Sprinzak, E., Hodgson, D., & Klingler, T. (1999). Prediction of gene function by genome-scale expression analysis: Prostate cancer-associated genes. Genome Research, 9, 1198–1203. doi:10.1101/gr.9.12.1198.

    Article  PubMed  CAS  Google Scholar 

  • Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72. doi:10.1080/135475000230541.

    Article  CAS  Google Scholar 

  • Wishart, D. S. (2008). Quantitative metabolomics using NMR. Trends in Analytical Chemistry, 27, 228–237. doi:10.1016/j.trac.2007.12.001.

    Article  CAS  Google Scholar 

  • Wold, S. (1976). Pattern recognition by means of disjoint principal components models. Pattern Recognition, 8, 127–139. doi:10.1016/0031-3203(76)90014-5.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Slawomir Zukowski for valuable assistance in developing the code for analysis of mutual information. The Natural Environment Research Council is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob G. Bundy.

Additional information

Qi Guo and Jasmin K. Sidhu contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

600 MHz 1H NMR spectrum of typical Lumbricus rubellus tissue extract. A: entire spectrum. B–E: expansions of peak-containing regions. Asterisks indicate resonances from unassigned compound mentioned in text (PDF 876 kb)

Fig. S2

Validation plots for PLS models shown in Fig. 1A–C, based on 20 permutations of the sample order. Green symbols represent R2 and blue symbols Q2. Abscissa represents correlation of the permuted data order with the original order. A: AZ. B: Cd. C: FA (PDF 663 kb)

Fig. S3

PLS models (predicted vs. observed for training sets) and validation plots for 3 compounds against concentrations measured in tissues. A: AZ. B: Cd. C: FA (PDF 1321 kb)

Fig. S4

Principal components analysis of NMR spectral data for three compound exposures (replicated doses only). Eight axes were fitted. The top and bottom vertices of the diamonds represent the 95% confidence limits for the group means; all data points are also shown on the chart. Controls: grey. Cd: blue. FA: red. AZ: black (PDF 706 kb)

Fig. S5

Plots of individual spectral variable relationships against AZ, Cd, or FA (for both soil and tissue concentrations) for the variables identified in Fig. 4 in the manuscript (PDF 2822 kb)

Fig. S6

Metabolites related to cocoon production rate: validation plot for PLS regression model shown in Fig. 6 (PDF 105 kb)

(DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Sidhu, J.K., Ebbels, T.M.D. et al. Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus . Metabolomics 5, 72–83 (2009). https://doi.org/10.1007/s11306-008-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0153-z

Keywords

Navigation