Skip to main content
Log in

Comparison of human axillary odour profiles obtained by gas chromatography/mass spectrometry and skin microbial profiles obtained by denaturing gradient gel electrophoresis using multivariate pattern recognition

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Several studies have shown that microbial action is responsible for many compounds responsible for human odour. In this paper, we compare the pattern of microbial profiles and that of chemical profiles of human axillary odour by using multivariate pattern matching techniques. Approximately 200 subjects from Carinthia, Austria, participated in the study. The microbial profiles were represented by denaturing gradient gel electrophoresis (DGGE) analysis and the axillary odour profiles were determined in the sweat samples collected by a stir-bar sampling device and analysed by gas chromatography/mass spectrometry (GC/MS). Both qualitative and quantitative distance metrics were used to construct dissimilarity matrices between samples which were then used to represent the patterns of these two types of profiles. The distance matrices were then compared by using the Mantel test and the Procrustean test. The results show that on the overall dataset there is no strong correlation between microbial and chemical profiles. When the data are split into family groups, correlations vary according to family with a range of estimated p values from 0.00 to 0.90 that the null hypothesis (no correlation) holds. When 32 subjects who followed four basic rules of behaviour were selected, the estimated p-values are 0.00 using qualitative and <0.01 using quantitative distance metrics, suggesting excellent evidence that there is a connection between the microbial and chemical signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Brereton R.G. (2003) Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Wiley, Chichester

    Google Scholar 

  • Box G.E.P., Cox D.R. (1964) An analysis of transformations. J. R. Stat. Soc. B, 26:211–252

    Google Scholar 

  • Dixon, S.J., Brereton, R.G., Soini, H.A., Novotny, M.V. and Penn D.J. (2006). An automated method for peak detection and alignment in gas chromatography-mass spectrometry as applied to a large metabolomic dataset from human sweat. J. Chemomet. in press

  • Gentle J.E. (1998) Numerical Linear Algebra for Applications in Statistics. Springer-Verlag, Berlin

    Google Scholar 

  • Golub G.H., Loan C.F.V. (1996) Matrix Computations. The Johns Hopkins University Press, London

    Google Scholar 

  • Gower J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis Biometrika 53:325–338

    Google Scholar 

  • Gower D.B., Bird S., Sharma P., House F.R. (1985) Axillary 5α-androst-16-en-3-one in men and women: Relationships with olfactory activity to odorous 16-androstenes Cell. Mol. Life Sci. 41:1134–1136

    Article  CAS  Google Scholar 

  • Gower J.C., Legendre P. (1986) Metric and Euclidean properties of dissimilarity coefficients, J. Classif. 3, 5–48

    Article  Google Scholar 

  • Graepel T., Herbrich R., Bollmann-Sdorra P., Obermayer K. (1998) Classification on pairwise proximity data. In: Jordan MI, Kearns MJ, Solla SA (Eds) Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, pp 438–444

    Google Scholar 

  • Huber W., von Heydebrek A., Sültmann H., Poustka A., Vingron M. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics, 18(suppl. 1):S96–S104

    PubMed  Google Scholar 

  • Jaccard, P. (1908). Bull. Soc. Vaud. Sci. Nat. 44, 223–270

    Google Scholar 

  • Jackson D.A. (1995) Protest: A Procrustean randomization test of community environment concordance. Ecoscience 2:297–303

    Google Scholar 

  • Krzanowski W.J., Marrior F.H.C. (1994) Multivariate Analysis, Part I. Distributions, Ordination and Inference. Arnold, London

    Google Scholar 

  • Mantel N.A. (1967) The detection of disease clustering and a generalized regression approach. Can. Res. 27:209–220

    CAS  Google Scholar 

  • Marples M.J. (1969) Life on the human skin. Sci. Am. 220:108–115

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G., de Waal E.C., Uitterlinden A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700

    PubMed  CAS  Google Scholar 

  • Muyzer G., Hottenträger S., Teske A., Wawer C. (1995) Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA: A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A.D., van Elsas J.D., de Bruijin F.J. (Eds) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–23

    Google Scholar 

  • Pekalska E., Paclik P., Duin R.P.W. (2002) A generalized Kernel approach to dissimilarity-based classification, J. Mach. Learn. Res. 2:175–221

    Article  Google Scholar 

  • Penn D.J., Oberzaucher E., Grammer K., Fischer G., Soini H.A., Wiesler D., Novotny M.V., Dixon S.J., Xu Y., Brereton R.G. (2007) Individual and gender fingerprints in body odour, J. R. Soc.: Interface, 4:331–340

    Article  Google Scholar 

  • Peres-Neto P.R., Jackson D.A. (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test, Oecologia 129:169–178

    Article  Google Scholar 

  • Rennie P.J., Gower D.B., Holland K.T., Mallet A.I., Watkins W.J. (1990) The skin microflora and the formation of human axillary odour. Int. J. Cosmet. Sci. 12:197–208

    Article  PubMed  CAS  Google Scholar 

  • Rennie P.J., Gower D.B., Holland K.T. (1991) In-vitro and in-vivo studies of human axillary odour and the cutaneous microflora Br. J. Dermatol. 124:596–602

    Article  PubMed  CAS  Google Scholar 

  • Rodrìguez-Lázaro D.A., Jofré T., Aymerich M., Hugas M., Pla M. (2004) Rapid quantitative detection of Listeria monocytogenes by Real-Time PCR. Appl. Environ. Microbiol. 70:6299–6301

    Article  PubMed  CAS  Google Scholar 

  • Rohlf F.J., Slice D.E. (1990) Extensions of the Procrustes method of the optimal superimposition of landmarks. Syst. Zool. 39:40–59

    Article  Google Scholar 

  • Sanguinetti C.J., Dias Neto E., Simpson A.J.G. (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels, Biotechniques 17:915–919

    Google Scholar 

  • Sastry S.D., Buck K.T., Janak, J., Dressler M., Preti G. (1980) Volatiles emitted by humans. Waller G.R., Dermer O.C. (Eds) Biochemical Applications of Mass Spectrometry John Wiley & Sons, New York, pp 1085–1129

    Google Scholar 

  • Sato K., Leidal R., Sato F. (1987) Morphology and development of an apoeccrine sweat gland in human axillae. Am. J. Physiol. Regul. Integr. Comp. Physiol. 252:R166–180

    CAS  Google Scholar 

  • Soini H.A., Bruce K.E., Klouckova I., Brereton R.G., Penn D.J., Novotny M.V. (2006) In-situ surface sampling of biological objects and preconcentration of their volatiles for chromatographic analysis. Anal. Chem. 78:7161–7168

    Article  PubMed  CAS  Google Scholar 

  • Wold S., Esbensen K., Geladi P. (1987) Principal component analysis, Chemom. Intell. Lab. Syst. 2:37–52

    Article  CAS  Google Scholar 

  • Williamson P., Kligman A.M. (1965) A new method for the quantitative investigation of cutaneous bacteria, J. Invest. Dermatol. 45:498–503

    Article  PubMed  CAS  Google Scholar 

  • Zwillinger D. (1997) Handbook of Differential Equations, 3rd edition. Academic Press, Boston

    Google Scholar 

Download references

Acknowledgements

Alexandra Katzer is thanked for her superb organisational skills. Hejun Duan of the Centre for Chemometrics is thanked for helping organise the GC/MS data, and Fan Gong for preliminary help in the microbial analysis. This work was sponsored by ARO Contract DAAD19-03-1-0215. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Brereton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Dixon, S.J., Brereton, R.G. et al. Comparison of human axillary odour profiles obtained by gas chromatography/mass spectrometry and skin microbial profiles obtained by denaturing gradient gel electrophoresis using multivariate pattern recognition. Metabolomics 3, 427–437 (2007). https://doi.org/10.1007/s11306-007-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-007-0054-6

Keywords

Navigation